000905120 001__ 905120
000905120 005__ 20220131120447.0
000905120 037__ $$aFZJ-2022-00412
000905120 1001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b0$$eCorresponding author$$ufzj
000905120 1112_ $$aCarbon Allocation in plants$$cVersailles$$d2022-10-28 - 2022-10-29$$wFrance
000905120 245__ $$aMonitoring spatial and temporal growth and carbon dynamics in roots by co-registration of Magnetic Resonance Imaging and Positron Emission Tomography
000905120 260__ $$c2021
000905120 3367_ $$033$$2EndNote$$aConference Paper
000905120 3367_ $$2DataCite$$aOther
000905120 3367_ $$2BibTeX$$aINPROCEEDINGS
000905120 3367_ $$2DRIVER$$aconferenceObject
000905120 3367_ $$2ORCID$$aLECTURE_SPEECH
000905120 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1642088137_3687$$xAfter Call
000905120 520__ $$aIndividual plants vary in their ability to respond to environmental changes. The plastic response of a plant enhances its ability to avoid environmental constraints, and hence supports growth and reproduction, and evolutionary and agricultural success. Due to the opaque nature of soil, a direct observation of belowground processes is not possible. Major progress in the analysis of belowground processes on individual plants has been made by the application of non-invasive imaging methods including Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). MRI allows for repetitive measurements of roots growing in soil and facilitates quantification of root system architecture traits in 3D. PET, on the other hand, opens a door to analyze dynamic physiological processes in plants such as long-distance carbon transport in a repeatable manner. Combining MRI with PET enables monitoring of carbon tracer allocation into active sink structures such as nodules. Further, co-registration of MRI and PET allows for innovative and image-based sampling strategies of rhizosphere microorganisms, such as bacteria, fungi and protists.We are convinced that this approach will help revealing novel traits demanded in ecological studies or breeding programs for future crops.
000905120 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000905120 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b1$$ufzj
000905120 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b2$$ufzj
000905120 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b3$$ufzj
000905120 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b4$$ufzj
000905120 7001_ $$0P:(DE-HGF)0$$aSchultes, Sina$$b5
000905120 7001_ $$0P:(DE-HGF)0$$aKnief, Claudia$$b6
000905120 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b7$$ufzj
000905120 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b8$$ufzj
000905120 909CO $$ooai:juser.fz-juelich.de:905120$$pVDB
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b0$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b1$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b2$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b3$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b4$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b7$$kFZJ
000905120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b8$$kFZJ
000905120 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000905120 9141_ $$y2021
000905120 920__ $$lyes
000905120 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000905120 980__ $$aconf
000905120 980__ $$aVDB
000905120 980__ $$aI:(DE-Juel1)IBG-2-20101118
000905120 980__ $$aUNRESTRICTED