001     905120
005     20220131120447.0
037 _ _ |a FZJ-2022-00412
100 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Carbon Allocation in plants
|c Versailles
|d 2022-10-28 - 2022-10-29
|w France
245 _ _ |a Monitoring spatial and temporal growth and carbon dynamics in roots by co-registration of Magnetic Resonance Imaging and Positron Emission Tomography
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1642088137_3687
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Individual plants vary in their ability to respond to environmental changes. The plastic response of a plant enhances its ability to avoid environmental constraints, and hence supports growth and reproduction, and evolutionary and agricultural success. Due to the opaque nature of soil, a direct observation of belowground processes is not possible. Major progress in the analysis of belowground processes on individual plants has been made by the application of non-invasive imaging methods including Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). MRI allows for repetitive measurements of roots growing in soil and facilitates quantification of root system architecture traits in 3D. PET, on the other hand, opens a door to analyze dynamic physiological processes in plants such as long-distance carbon transport in a repeatable manner. Combining MRI with PET enables monitoring of carbon tracer allocation into active sink structures such as nodules. Further, co-registration of MRI and PET allows for innovative and image-based sampling strategies of rhizosphere microorganisms, such as bacteria, fungi and protists.We are convinced that this approach will help revealing novel traits demanded in ecological studies or breeding programs for future crops.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 1
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 2
|u fzj
700 1 _ |a van Dusschoten, Dagmar
|0 P:(DE-Juel1)129425
|b 3
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 4
|u fzj
700 1 _ |a Schultes, Sina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Knief, Claudia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 7
|u fzj
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 8
|u fzj
909 C O |o oai:juser.fz-juelich.de:905120
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129360
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21