Home > Publications database > Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope > print |
001 | 905125 | ||
005 | 20230522125349.0 | ||
024 | 7 | _ | |a 10.1016/j.ultramic.2021.113392 |2 doi |
024 | 7 | _ | |a 0304-3991 |2 ISSN |
024 | 7 | _ | |a 1879-2723 |2 ISSN |
024 | 7 | _ | |a 2128/30159 |2 Handle |
024 | 7 | _ | |a altmetric:116509838 |2 altmetric |
024 | 7 | _ | |a WOS:000787631800003 |2 WOS |
037 | _ | _ | |a FZJ-2022-00417 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Weßels, Teresa |0 P:(DE-Juel1)171678 |b 0 |e Corresponding author |
245 | _ | _ | |a Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope |
260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1653376601_22539 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to 122 ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726) |0 G:(GEPRIS)405553726 |c 405553726 |x 1 |
536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |x 2 |f ERC-2019-SyG |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |x 3 |f H2020-INFRAIA-2018-1 |
536 | _ | _ | |a moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317) |0 G:(DE-HGF)VH-NG-1317 |c VH-NG-1317 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Däster, Simon |0 0000-0003-2026-7784 |b 1 |
700 | 1 | _ | |a Murooka, Yoshie |0 P:(DE-Juel1)173664 |b 2 |u fzj |
700 | 1 | _ | |a Zingsem, Benjamin |0 P:(DE-Juel1)186870 |b 3 |u fzj |
700 | 1 | _ | |a Migunov, Vadim |0 P:(DE-Juel1)159136 |b 4 |
700 | 1 | _ | |a Kruth, Maximilian |0 P:(DE-Juel1)138713 |b 5 |u fzj |
700 | 1 | _ | |a Finizio, Simone |0 0000-0002-1792-0626 |b 6 |
700 | 1 | _ | |a Lu, Peng-Han |0 P:(DE-Juel1)167381 |b 7 |u fzj |
700 | 1 | _ | |a Kovács, András |0 P:(DE-Juel1)144926 |b 8 |u fzj |
700 | 1 | _ | |a Oelsner, Andreas |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Müller-Caspary, Knut |0 P:(DE-Juel1)165314 |b 10 |
700 | 1 | _ | |a Acremann, Yves |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 12 |
773 | _ | _ | |a 10.1016/j.ultramic.2021.113392 |g Vol. 233, p. 113392 - |0 PERI:(DE-600)1479043-9 |p 113392 - |t Ultramicroscopy |v 233 |y 2022 |x 0304-3991 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905125/files/Invoice_OAD0000173008.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905125/files/1-s2.0-S0304399121001728-main.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905125/files/UM_wessels_2021_revised_JUSER_database.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:905125 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171678 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0003-2026-7784 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173664 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186870 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)138713 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 0000-0002-1792-0626 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)167381 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)144926 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)165314 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-15 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ULTRAMICROSCOPY : 2021 |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-15 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|