000905130 001__ 905130
000905130 005__ 20240712113130.0
000905130 0247_ $$2doi$$a10.1002/aenm.202103045
000905130 0247_ $$2ISSN$$a1614-6832
000905130 0247_ $$2ISSN$$a1614-6840
000905130 0247_ $$2Handle$$a2128/30814
000905130 0247_ $$2altmetric$$aaltmetric:120293199
000905130 0247_ $$2WOS$$aWOS:000738814800001
000905130 037__ $$aFZJ-2022-00422
000905130 082__ $$a050
000905130 1001_ $$00000-0001-7053-3986$$aGomez-Martin, Aurora$$b0$$eCorresponding author
000905130 245__ $$aMagnesium Substitution in Ni‐Rich NMC Layered Cathodes for High‐Energy Lithium Ion Batteries
000905130 260__ $$aWeinheim$$bWiley-VCH$$c2022
000905130 3367_ $$2DRIVER$$aarticle
000905130 3367_ $$2DataCite$$aOutput Types/Journal article
000905130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646143393_3719
000905130 3367_ $$2BibTeX$$aARTICLE
000905130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905130 3367_ $$00$$2EndNote$$aJournal Article
000905130 520__ $$aNi-rich LiNi1−x−yMnxCoyO2 (NMC) layered oxides are promising cathode materials for high-energy density lithium ion batteries but suffer from severe capacity fading upon cycling. Elemental substitution (= doping) with Mg has repeatedly attracted attention in NMC materials to overcome instability problems at reasonable cost, yet rational compositional tuning is needed to guarantee sufficient cycle life without compromising energy density on the material level. Herein, a series of Mg-substituted NMC materials with 90 mol% Ni are investigated regarding key performance metrics in NMC || graphite full-cells benchmarked against LiNi0.80Mn0.10Co0.10O2 and LiNi0.90Mn0.05Co0.05O2 synthetized using the same co-precipitation route. A linear correlation between cycle life and attainable gravimetric capacities is demonstrated, which are directly influenced by the degree of Mg substitution and the amount of Li+ cycled upon (de-)lithiation processes. A Mg content <2 mol% should be considered to take notable benefit from the increase in Ni content from 80 to 90 mol% to achieve a higher energy density. The present study highlights the importance of evaluating the true implications of elemental substitution on cell performance and is expected to be an insightful guideline for the future development of NMC-type cathode materials in particular with high Ni and low Co content.
000905130 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000905130 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905130 7001_ $$0P:(DE-HGF)0$$aReissig, Friederike$$b1
000905130 7001_ $$0P:(DE-HGF)0$$aFrankenstein, Lars$$b2
000905130 7001_ $$0P:(DE-HGF)0$$aHeidbüchel, Marcel$$b3
000905130 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
000905130 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b5
000905130 7001_ $$00000-0002-5670-0327$$aSchmuch, Richard$$b6$$eCorresponding author
000905130 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202103045$$gp. 2103045 -$$n8$$p2103045$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000905130 8564_ $$uhttps://juser.fz-juelich.de/record/905130/files/Advanced%20Energy%20Materials%20-%202022%20-%20Gomez%E2%80%90Martin%20-%20Magnesium%20Substitution%20in%20Ni%E2%80%90Rich%20NMC%20Layered%20Cathodes%20for%20High%E2%80%90Energy.pdf$$yOpenAccess
000905130 909CO $$ooai:juser.fz-juelich.de:905130$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000905130 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000905130 9141_ $$y2022
000905130 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000905130 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905130 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000905130 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000905130 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000905130 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000905130 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000905130 9801_ $$aFullTexts
000905130 980__ $$ajournal
000905130 980__ $$aVDB
000905130 980__ $$aUNRESTRICTED
000905130 980__ $$aI:(DE-Juel1)IEK-12-20141217
000905130 981__ $$aI:(DE-Juel1)IMD-4-20141217