000905147 001__ 905147
000905147 005__ 20240712113154.0
000905147 0247_ $$2doi$$a10.3389/fchem.2021.733321
000905147 0247_ $$2Handle$$a2128/30182
000905147 0247_ $$2altmetric$$aaltmetric:116195460
000905147 0247_ $$2pmid$$a34805088
000905147 0247_ $$2WOS$$aWOS:000719822900001
000905147 037__ $$aFZJ-2022-00439
000905147 082__ $$a540
000905147 1001_ $$0P:(DE-HGF)0$$aConnor, Timothy$$b0
000905147 245__ $$aPyrochlore Compounds From Atomistic Simulations
000905147 260__ $$aLausanne$$bFrontiers Media$$c2021
000905147 3367_ $$2DRIVER$$aarticle
000905147 3367_ $$2DataCite$$aOutput Types/Journal article
000905147 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646734869_14868
000905147 3367_ $$2BibTeX$$aARTICLE
000905147 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905147 3367_ $$00$$2EndNote$$aJournal Article
000905147 520__ $$aPyrochlore compounds (A2B2O7) have a large applicability in various branches of science and technology. These materials are considered for use as effective ionic conductors for solid state batteries or as matrices for immobilization of actinide elements, amongst many other applications. In this contribution we discuss the simulation-based effort made in the Institute of Energy and Climate Research at Forschungszentrum Jülich and partner institutions regarding reliable computation of properties of pyrochlore and defect fluorite compounds. In the scope of this contribution, we focus on the investigation of dopant incorporation, defect formation and anion migration, as well as understanding of order-disorder transitions in these compounds. We present new, accurate simulated data on incorporation of U, Np, Pu, Am and Cm actinide elements into pyrochlores, activation energies for oxygen migration and radiation damage-induced structural changes in these materials. All the discussed simulation results are combined with available experimental data to provide a reliable description of properties of investigated materials. We demonstrate that a synergy of computed and experimental data leads to a superior characterization of pyrochlores, which could not be easily achieved by either of these methods when applied separately. 
000905147 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000905147 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905147 7001_ $$0P:(DE-Juel1)180208$$aCheong, Oskar$$b1$$ufzj
000905147 7001_ $$0P:(DE-Juel1)188288$$aBornhake, Thomas$$b2$$ufzj
000905147 7001_ $$0P:(DE-HGF)0$$aShad, Alison C.$$b3
000905147 7001_ $$0P:(DE-Juel1)164857$$aTesch, Rebekka$$b4$$ufzj
000905147 7001_ $$0P:(DE-Juel1)180989$$aSun, Mengli$$b5
000905147 7001_ $$0P:(DE-Juel1)180499$$aHe, Zhengda$$b6$$ufzj
000905147 7001_ $$0P:(DE-HGF)0$$aBukayemsky, Andrey$$b7
000905147 7001_ $$0P:(DE-Juel1)144348$$aVinograd, Victor L.$$b8$$ufzj
000905147 7001_ $$0P:(DE-Juel1)142526$$aFinkeldei, Sarah C.$$b9
000905147 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr$$b10$$eCorresponding author
000905147 773__ $$0PERI:(DE-600)2711776-5$$a10.3389/fchem.2021.733321$$gVol. 9, p. 733321$$p733321$$tFrontiers in Chemistry$$v9$$x2296-2646$$y2021
000905147 8564_ $$uhttps://juser.fz-juelich.de/record/905147/files/fchem-09-733321.pdf$$yOpenAccess
000905147 909CO $$ooai:juser.fz-juelich.de:905147$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180208$$aForschungszentrum Jülich$$b1$$kFZJ
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188288$$aForschungszentrum Jülich$$b2$$kFZJ
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164857$$aForschungszentrum Jülich$$b4$$kFZJ
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180499$$aForschungszentrum Jülich$$b6$$kFZJ
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144348$$aForschungszentrum Jülich$$b8$$kFZJ
000905147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b10$$kFZJ
000905147 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000905147 9141_ $$y2021
000905147 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000905147 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905147 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CHEM : 2019$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905147 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-04
000905147 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000905147 920__ $$lyes
000905147 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000905147 9801_ $$aFullTexts
000905147 980__ $$ajournal
000905147 980__ $$aVDB
000905147 980__ $$aI:(DE-Juel1)IEK-13-20190226
000905147 980__ $$aUNRESTRICTED
000905147 981__ $$aI:(DE-Juel1)IET-3-20190226