000905148 001__ 905148
000905148 005__ 20240709074204.0
000905148 0247_ $$2doi$$a10.1175/JAS-D-21-0252.1
000905148 0247_ $$2ISSN$$a0022-4928
000905148 0247_ $$2ISSN$$a0095-9634
000905148 0247_ $$2ISSN$$a1520-0469
000905148 0247_ $$2ISSN$$a2163-5374
000905148 0247_ $$2Handle$$a2128/30919
000905148 0247_ $$2altmetric$$aaltmetric:120357915
000905148 0247_ $$2WOS$$aWOS:000808410000001
000905148 037__ $$aFZJ-2022-00440
000905148 041__ $$aEnglish
000905148 082__ $$a550
000905148 1001_ $$0P:(DE-HGF)0$$aKruse, Christopher G.$$b0$$eCorresponding author
000905148 245__ $$aObserved and Modeled Mountain Waves from the Surface to the Mesosphere Near the Drake Passage
000905148 260__ $$aBoston, Mass.$$bAmerican Meteorological Soc.$$c2022
000905148 3367_ $$2DRIVER$$aarticle
000905148 3367_ $$2DataCite$$aOutput Types/Journal article
000905148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648452333_4719
000905148 3367_ $$2BibTeX$$aARTICLE
000905148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905148 3367_ $$00$$2EndNote$$aJournal Article
000905148 520__ $$aFour state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer.All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. u'v') were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
000905148 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000905148 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
000905148 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905148 7001_ $$0P:(DE-HGF)0$$aJoan Alexander, M.$$b1
000905148 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000905148 7001_ $$0P:(DE-HGF)0$$aNiekerk, Annelize van$$b3
000905148 7001_ $$0P:(DE-HGF)0$$aPolichtchouk, Inna$$b4
000905148 7001_ $$0P:(DE-HGF)0$$aBacmeister, Julio T.$$b5
000905148 7001_ $$0P:(DE-HGF)0$$aHolt, Laura$$b6
000905148 7001_ $$0P:(DE-HGF)0$$aPlougonven, Riwal$$b7
000905148 7001_ $$0P:(DE-HGF)0$$aŠácha, Petr$$b8
000905148 7001_ $$0P:(DE-HGF)0$$aWright, Corwin$$b9
000905148 7001_ $$0P:(DE-HGF)0$$aSato, Kaoru$$b10
000905148 7001_ $$0P:(DE-HGF)0$$aShibuya, Ryosuke$$b11
000905148 7001_ $$0P:(DE-HGF)0$$aGisinger, Sonja$$b12
000905148 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b13
000905148 7001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin$$b14
000905148 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b15
000905148 773__ $$0PERI:(DE-600)2025890-2$$a10.1175/JAS-D-21-0252.1$$n4$$p909–932$$tJournal of the atmospheric sciences$$v79$$x0022-4928$$y2022
000905148 8564_ $$uhttps://juser.fz-juelich.de/record/905148/files/%5B15200469%20-%20Journal%20of%20the%20Atmospheric%20Sciences%5D%20Observed%20and%20Modeled%20Mountain%20Waves%20from%20the%20Surface%20to%20the%20Mesosphere%20near%20the%20Drake%20Passage.pdf$$yPublished on 2022-03-16. Available in OpenAccess from 2023-03-16.
000905148 8564_ $$uhttps://juser.fz-juelich.de/record/905148/files/paper_chris_16dez2021_preprint_final.pdf$$yPublished on 2022-03-16. Available in OpenAccess from 2023-03-16.
000905148 909CO $$ooai:juser.fz-juelich.de:905148$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000905148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b13$$kFZJ
000905148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich$$b14$$kFZJ
000905148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b15$$kFZJ
000905148 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000905148 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
000905148 9141_ $$y2022
000905148 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905148 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000905148 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000905148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ATMOS SCI : 2021$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-08
000905148 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-08
000905148 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000905148 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000905148 9801_ $$aFullTexts
000905148 980__ $$ajournal
000905148 980__ $$aVDB
000905148 980__ $$aUNRESTRICTED
000905148 980__ $$aI:(DE-Juel1)IEK-7-20101013
000905148 980__ $$aI:(DE-Juel1)JSC-20090406
000905148 981__ $$aI:(DE-Juel1)ICE-4-20101013