Home > Publications database > Observed and Modeled Mountain Waves from the Surface to the Mesosphere Near the Drake Passage > print |
001 | 905148 | ||
005 | 20240709074204.0 | ||
024 | 7 | _ | |a 10.1175/JAS-D-21-0252.1 |2 doi |
024 | 7 | _ | |a 0022-4928 |2 ISSN |
024 | 7 | _ | |a 0095-9634 |2 ISSN |
024 | 7 | _ | |a 1520-0469 |2 ISSN |
024 | 7 | _ | |a 2163-5374 |2 ISSN |
024 | 7 | _ | |a 2128/30919 |2 Handle |
024 | 7 | _ | |a altmetric:120357915 |2 altmetric |
024 | 7 | _ | |a WOS:000808410000001 |2 WOS |
037 | _ | _ | |a FZJ-2022-00440 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Kruse, Christopher G. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Observed and Modeled Mountain Waves from the Surface to the Mesosphere Near the Drake Passage |
260 | _ | _ | |a Boston, Mass. |c 2022 |b American Meteorological Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648452333_4719 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer.All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. u'v') were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Joan Alexander, M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hoffmann, Lars |0 P:(DE-Juel1)129125 |b 2 |
700 | 1 | _ | |a Niekerk, Annelize van |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Polichtchouk, Inna |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bacmeister, Julio T. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Holt, Laura |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Plougonven, Riwal |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Šácha, Petr |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Wright, Corwin |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Sato, Kaoru |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Shibuya, Ryosuke |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Gisinger, Sonja |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Ern, Manfred |0 P:(DE-Juel1)129117 |b 13 |
700 | 1 | _ | |a Meyer, Catrin |0 P:(DE-Juel1)156465 |b 14 |
700 | 1 | _ | |a Stein, Olaf |0 P:(DE-Juel1)3709 |b 15 |
773 | _ | _ | |a 10.1175/JAS-D-21-0252.1 |0 PERI:(DE-600)2025890-2 |n 4 |p 909–932 |t Journal of the atmospheric sciences |v 79 |y 2022 |x 0022-4928 |
856 | 4 | _ | |y Published on 2022-03-16. Available in OpenAccess from 2023-03-16. |u https://juser.fz-juelich.de/record/905148/files/%5B15200469%20-%20Journal%20of%20the%20Atmospheric%20Sciences%5D%20Observed%20and%20Modeled%20Mountain%20Waves%20from%20the%20Surface%20to%20the%20Mesosphere%20near%20the%20Drake%20Passage.pdf |
856 | 4 | _ | |y Published on 2022-03-16. Available in OpenAccess from 2023-03-16. |u https://juser.fz-juelich.de/record/905148/files/paper_chris_16dez2021_preprint_final.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:905148 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129125 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)129117 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)156465 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)3709 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J ATMOS SCI : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-08 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-08 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-08 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|