
Noname manuscript No.
(will be inserted by the editor)

Statistical sensitivity estimates for oscillating electric
dipole moment measurements in storage rings ?
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Abstract In this paper analytical expressions are derived to describe the spin
motion of a particle in magnetic and electric fields in the presence of an axion field
causing an oscillating electric dipole moment (EDM). These equations are used to
estimate statistical sensitivities for axion searches at storage rings.

The estimates obtained from the analytic expressions are compared to numer-
ical estimates from simulations in reference [1]. A good agreement is found.

Keywords dark matter · axion · storage ring

? accpetaed for publication in European Physical Journal C

Jörg Pretz
Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
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1 Introduction and motivation

Axions and axion like particles (ALPs) are candidates for dark matter. There
is thus a huge experimental effort for the search of these kind of particles. For
a detailed review, we refer the reader to references [2,3]. Axions and ALPs can
interact with ordinary matter in various ways. Reference [4] identifies three terms:

a

f0
Fµν F̃µν ,

a

fa
GµνG̃µν ,

∂µa

fa
Ψ̄fγ

µγ5Ψ (1)

describing the coupling to photons, gluons and to the spin of fermions, respectively.
The vast majority of experiments makes use of the first term (e.g. Cavity exper-
iments (ADMX), helioscopes (CAST), light-through-wall experiments (ALPS)).
In addition, astrophysical observations also provide sensitive limits to the axion-
photon coupling. In general, it is rather difficult for these experiments to reach
masses below 10−6 eV, one reason being that the axion wave length becomes too
large. Furthermore, these experiments are measuring rates proportional to at least
a small amplitude squared.

For the second (and third) term in the list (1) this is different. It turns out that
the second term has the same structure as the QCD-θ term which is also responsible
for an electric dipole moment (EDM) of nucleons. The axion field gives rise to an
effective time-dependent θ-term and oscillates at a frequency proportional to the
mass of the axion ma. This gives rise to an oscillating EDM. New opportunities
to search for axions/ALPs with much higher sensitivity arise, because the signal
is proportional to an amplitude A and not to its square. To date, NMR based
methods are being used to look at oscillating EDMs [5].

Another possibility is to search for axions/ALPs in storage rings. Storage ring
experiments have been proposed to search for electric dipole moments of charge
particles [6,7]. These experiments allow also, with small modifications, to search for
oscillating EDMs. This possibility is discussed in this paper. Section 2 explains the
principle of the experiment, how the (oscillating) EDM alters the spin motion in
electromagnetic fields and leads to a polarization observable. In section 3 statistical
sensitivities for oscillating EDMs based on these polarization are presented.

2 Spin motion in storage rings

The spin motion relative to the momentum vector in electric and magnetic fields
is governed by the Thomas-BMT equation [8,9,10]:

dS

dt
= (ΩMDM + ΩEDM)× S, (2)

ΩMDM = − q

m

[
GB−

(
G− 1

γ2 − 1

)
β ×E

c

]
, (3)

ΩEDM = − ηq

2mc
[E + cβ ×B] . (4)

S in this equation denotes the spin vector in the particle rest frame, t the time in
the laboratory system, β and γ the relativistic Lorentz factors, and B and E the
magnetic and electric fields in the laboratory system, respectively. The magnetic
dipole moment µ and electric dipole moment d both pointing in the direction
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Fig. 1 Illustration of the coordinate system used.

of the particle’s spin S are related to the dimensionless quantities G (magnetic
anomaly) and η in equation 2:

µ = g
qh̄

2m
S = (1 +G)

qh̄

m
S and d = η

qh̄

2mc
S . (5)

We assume a vertical magnetic field and a radial electric field, constant in time,
forcing the particle on a circular orbit. The three vectors B, E and v = βc are
thus mutually orthogonal, as indicated in figure 1. In this case

ΩMDM =

 0
ΩMDM

0

 and ΩEDM =

 ηΩ̃EDM

0
0

 (6)

with ΩMDM = − q
m (GB +

(
G− 1

γ2−1

)
βE
c ) and Ω̃EDM = − q

2mc (E + cβB), B = |B|
and E = |E|. The coordinate system is chosen such that the first component
points in radial direction, the second in vertical and the third in longitudinal
direction. Note that β × E is anti-parallel to B. This explains the + sign in front

of
(
G− 1

γ2−1

)
in the definition of ΩMDM instead of a − sign in equation 3.

For the following discussion it is more convenient to write equation 2 in matrix
form:

dS

dt
= (AMDM +AEDM)S (7)

with (to simplify the notation we use ΩEDM instead of Ω̃EDM from now on)

AMDM =

 0 0 ΩMDM

0 0 0
−ΩMDM 0 0

 and AEDM = η

 0 0 0
0 0 ΩEDM

0 −ΩEDM 0

 . (8)
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In the following we assume that the EDM can have a constant term and a time
varying component, thus η = η0 + η1 cos(ωat + ϕa) as suggested in [4,11]. The
oscillating term is caused by an axion of mass given by the relation ωa = mac

2/h̄.
Assuming η0, η1 � G, AEDM in equation 7 can be treated as an perturbation.

The solution to first order in η0 and η1 for arbitrary initial condition of the spin
is given in Appendix A. The best sensitivity to η0 and η1 is obtained by observing
a build-up of a vertical polarization of a beam initially polarized in the horizontal
plane. Thus we are interested in the behavior of the vertical spin component Sv(t)
in the case where the spin points for example initially in the longitudinal direction
(S(0) = (0, 0, 1)T ). Using equation 37 in Appendix A one finds:

Sv(t) = η0ΩEDM
sin(ΩMDMt)

ΩMDM
+ η1

ΩEDM

2(ωa −ΩMDM)(ΩMDM + ωa)[
− 2ωa sin(ϕa)

+(ωa +ΩMDM) sin((ωa −ΩMDM)t+ ϕa)

+(ωa −ΩMDM) sin((ΩMDM + ωa)t+ ϕa)
]
. (9)

We are interested in the behavior close to the resonance condition ΩMDM ≈ ωa.
Ignoring in equation 9 all fast oscillating terms (i.e. assuming ΩMDM, (ΩMDM +
ωa)� ΩMDM − ωa) one finds

Sv(t) =
η1ΩEDM

2(ωa −ΩMDM)

(
− sin(ϕa) + sin ((ωa −ΩMDM)t+ ϕa)

)
. (10)

= η1
ΩEDM

2∆ω
(− sin(ϕa) + sin(∆ωt+ ϕa)) (11)

with ∆ω = ωa − ΩMDM For ϕa = 0 this expression coincides with the expression
given for NMR experiments [5]. At the resonance, ωa = ΩMDM, equation 11 reduces
to

Sv(t) =
η1ΩEDM

2
cos(ϕa) t. (12)

In this case the build-up is linear in time to first order in η1.
The phase ϕa of the axion field is unknown. The experiment should be per-

formed with two bunches in the ring where the polarisations are orthogonal to
each other, which corresponds to two phases ϕa and ϕa + π/2. This assures not
to miss an axion signal. This can also be seen in Fig. 2. It shows the build-up of
the vertical spin component Sv as a function of time t for ϕa = 0 and ϕa = π/2
and for different axion frequencies ωa and ΩMDM = 750000.0 s−1. This ΩMDM

corresponds to typical running conditions with deuterons of p = 970 MeV/c at the
COoler SYnchrotron COSY of Forschungszentrum Jülich in Germany. Note that
for a given ϕa the initial slope is the same independent of ωa. One clearly observes
the resonance behavior. If ΩMDM = ωa the polarisation build-up is maximal for
ϕa = 0. The more ΩMDM deviates from ωa, the weaker the signal becomes.

For the special case ωa = 0 equation 9 becomes

Sv =
ΩEDM

ΩMDM
sin(ΩMDMt) (η0 + η1 cos(ϕa)) . (13)

Compared to equations 10 and 12 the signal is two times larger. For the following
estimates of statistical uncertainties, we continue to use equations 10 and 12 for
conservative results.
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Fig. 2 Vertical spin component Sv as a function of time t for ϕa = 0 (upper plot) and
ϕa = π/2 (lower plot) and for different axion frequencies ωa and ΩMDM = 750000.0 s−1,
ΩEDM ≈ 1200000 s−1, η0 = 0, η1 = 10−10.

3 Statistical Error Estimates

Equations 11 and 12 can now be used to calculate statistical sensitivities under
various experimental conditions. We are interested in the error on η1.
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3.1 Resonance case

The best sensitivity is of course given on resonance, i.e. ΩMDM = ωa. In this case
the spin build-up follows equation 12:

Sv(t) = η1
ΩEDM

2
cos(ϕa)t . (14)

Assuming that one extracts a beam of N particles continuously on a target
with the same rate over a time period T during which the beam polarisation P is
assumed to be constant and using a polarimeter with an average analyzing power
A of the scattering process and a fraction f of the beam particles detected, the
observed vertical polarization (assuming Pv � P ) will be:

Pv(t) = PASv(t) = PAη1
ΩEDM

2
cos(ϕa)t . (15)

From this polarization measurement η1 can be determined with variance

V (η1) =
(

1

ΩEDM

)2 96

fN(ATP cos(ϕa))2
. (16)

Details are given in Appendix B.1.
Adding the information from the two bunches with ∆ϕa = π/2 one arrives at

V (η1) =
(

1

ΩEDM

)2 96

fN(ATP )2
. (17)

3.2 Off-resonance case

For the off-resonance case the vertical polarisation is obtained by multiplying
equation 11 with PA:

Pv(t) = η1PA
ΩEDM

2∆ω
(− sin(ϕa) + sin(∆ωt+ ϕa)) . (18)

In order to determine η1, the data have to be fitted to the functional form of
equation 18. The three fit parameter are η1, ∆ω and ϕa.

The central red curve in Figure 3 shows the figure of merit (FOM) defined as
the inverse of the variance of η1 as a function of ∆ωT/(2π) normalized to the FOM
at resonance ∆ω = ωa − ΩMDM = 0 given by the inverse of equation 17. If the
frequency is off be 1/T , with T being the measurement duration, the FOM drops
to roughly 20%. Details are given in appendix B.2. This suggests to take measure-
ments separated by 1/T in frequency, as indicated by the additional blue and green
FOM curves in Figure 3. The upper dashed black curve which is roughly constant
shows the sum of the FOMs from the measurements at the different frequencies.
Experimentally one would not run at frequencies ∆ωT/(2π) = . . . ,−2,−1, 0, 1, 2, . . .
as indicated in Figure 3 but rather sweep the frequency with the speed (=frequency
per time) v = 1/T 2.

To scan a region of ∆f = 1 kHz with a measurement duration of T = 10 s for
a single frequency, one would thus need a total measurement time

∆fT 2 = 105 s .

In this frequency range η1 would be determined with the same accuracy over the
whole frequency range.
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Fig. 3 Figure of merit (FOM) as a function of (ωa −ΩMDM)T/(2π) normalized to the FOM
at resonance ∆ω = (ωa − ΩMDM) = 0. Solid lines: FOM for measurements at ∆ωT/(2π) =
−2,−1, 0, 1, 2 respectively. Dashed line: sum of FOMs.

3.3 Estimates for the error on the axion-gluon coupling CG
fa

According to reference [12] the relation between the EDM d and θQCD is given by
d ≈ 10−16θQCDe cm. To simplify the discussion we make no distinction between
proton and deuteron. θQCD is connected to the axion field amplitude a0 and the
axion-gluon coupling strength Cg/fa via θQCD = a0 Cg/fa. Using the relation
between the axion density ρa to the amplitude a0 =

√
2ρa/ma and finally equating

ρa with the local dark matter density ρLDM ≈ 0.4GeV/cm3 ≈ 3 · 10−42GeV4

(see reference [13]), assuming that axions saturate the local DM energy, accuracy
estimates for Cg/fa can be obtained as a function of the axion mass ma:

dosc. = 10−16 θQCD e cm (19)

= 10−16 a0
CG
fa

(20)

= 10−16
√

2ρLDM
ma

CG
fa

(21)

= 2.5 · 10−18 CG
fa

1

ma
eV GeV ecm = η1

qh̄

2mc
S . (22)

Table 1 gives an overview over frequency ranges accessible at the existing
Cooler Synchrotron COSY at Forschungszentrum Jülich in Germany using po-
larized protons and deuterons and for a planned prototype storage ring with com-
bined electric and magnetic bending fields for an EDM measurement [14]. Other
parameters, like number of stored particles N , efficiency f , analyzing power A,
polarization P and spin coherence time τ are given as well.
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COSY prototype ring
proton deuteron proton

momentum p/GeV/c 0.3 3.7 0.3 3.7 0.25 0.30
spin revolution frequency ΩMDM/ 106 s−1 5.86 72.3 0.233 2.88 7.35 0.0
axion mass ma/eV 4 · 10−9 5 · 10−8 1.5 · 10−10 2 · 10−9 5 · 10−9 0
magnetic field B/T 0.07 0.8 0.07 0.8 0.0 0.033
electric field E/MV/m − − − − 7.4 7.4
stored particles per bunch N 109 1010

fraction detected events f 0.005 0.005
average analyzing power A 0.6 0.5
beam polarization P 0.8 0.8
spin coherence time τ /s 1000 1000

Table 1 Parameters used for the estimates. The ring radius of the prototype ring is R = 8.9 m.

The accuracy estimates are given for two scenarios

1. One year of beam time (107s) is spent at a single frequency.
2. In one year of beam time a certain range in frequency is covered.

For the duration of a single measurement, we assure that it does not exceed
the axion coherence time, τax, given by

τax =
πh̄

ma
Q

with a quality factor Q = 3 · 106 as in reference [1].
The dots in Fig. 4 indicate one-σ limits one could reach at COSY running with

protons or deuterons and for the prototype ring running at one fixed frequency for
one year for each point.

In the second scenario we start with the total running time available in one year,
Ty = 107 s. For the prototype ring, if one wants to span a region of ∆f = 1 MHz
in one year, the duration T is given by

T =

√
Ty
∆f

= 3.2 s .

for each frequency interval ∆fi = 1/T . For a 1 kHz region, one finds T = 100 s.
The corresponding limits are shown in Fig. 4 as colored areas. The green line

shows estimates from reference [1] scaled to match them with the assumptions
made in this document about the parameters N, f, P,A.

The same is shown for running at COSY. The fact that the limits using a pure
magnetic ring are getting worse at smaller frequency is due to the fact that for
lower frequencies, the magnetic field is lower, which in turns makes ΩEDM smaller
and one looses sensitivity. For the combined ring the electric field is constant, a
small magnetic field is added to slow down the spin precession. ΩEDM varies only
very little.

4 Summary and conclusion

Analytic expressions for the spin motion in presence of an oscillating EDM in
storage rings were derived from the Thomas-BMT equation. These were used to
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Fig. 4 One σ limits for the axion-gluon coupling Cg/fa reachable within one year running
at a fixed frequency (stars) or over a given frequency range (areas) for COSY (orange) or the
prototype ring (blue). In addition limits reached by the nEDM experiments [15], nucleosynthe-
sis [16] and prospects for NMR experiments [5] are shown schematically. The green line shows
the estimates obtained in [1] with simulations.
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give sensitivity estimates for the axion-gluon coupling at COSY and at a prototype
EDM ring. This was done for two scenarios: 1.) Running at one fixed frequency,
2.) covering a wide range in frequency.

The results are in good agreement compared to reference [1] where a numerical
approach was used to find sensitivities.
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A Solution of equation 7

Equation 7 can be written as

Ṡ = (AMDM + ηÃEDM(t))S . (23)

To solve equation 23 we expand the solution in orders of η

S(t) = S0(t) + ηS1(t) (24)

Entering equation 24 in equation 23 and keeping only terms up to order one in η yields

Ṡ0 + ηṠ1 = AMDMS0 + η(AMDMS1 + ÃEDMS0) . (25)

Thus

Ṡ0 = AMDMS0 , (26)

Ṡ1 = (AMDMS1 + ÃEDMS0) . (27)

Since AMDM does not depend on t, equation 26 has the solution

S0(t) = exp(AMDMt)S(0) (28)

with arbitrary initial condition S(0).
The solution for the equation 27 can be found using the variation of constant method:

S1 = exp(AMDMt)S(0) +

∫ t

0

exp(AMDM(t− s))ÃEDMS0(t)ds . (29)

Up to first order in η the solution is

S(t) = S0(t) + ηS1(t) (30)

= (1 + η) exp(AMDMt)S(0) + η

∫ t

0

exp(t− s)ÃEDMexp(AMDMt)S(0)ds (31)

Using Mathematica [17] one finds S(t) = A(t)S(0) with

A11 = (1 + η0) cos(ΩMDMt) (32)

A12 =
η0ΩEDM(cos(ΩMDMt) − 1)

ΩMDM

+ η1ΩEDM

(
(sin(ϕa)(ωa sin(ΩMDMt) −ΩMDM sin(ωat))

ω2
a −Ω2

MDM
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+
ΩMDM cos(ϕa)(cos(ωat) − cos(ΩMDMt))

ω2
a −Ω2

MDM

)
(33)

A13 = (1 + η0) sin(ΩMDMt) (34)

A21 =
η0ΩEDM(cos(ΩMDMt) − 1)

ΩMDM

− η1ΩEDM

(
(cos((ωa −ΩMDM)t+ ϕa)

2(ωa −ΩMDM)

+
(ΩMDM − ωa) cos((ωa +ΩMDM)t+ ϕa) − 2ΩMDM cos(ϕa))

2(ωa −ΩMDM)(ωa +ΩMDM)

)
(35)

A22 = 1 + η0 (36)

A23 =
η0ΩEDM sin(ΩMDMt)

ΩMDM

+ η1ΩEDM

(
(sin((ωa −ΩMDM)t+ ϕa)

2(ωa −ΩMDM)

+
(ωa −ΩMDM) sin((ωa +ΩMDM)t+ ϕa) − 2ωa sin(ϕa))

2(ωa −ΩMDM)(ωa +ΩMDM)

)
(37)

A31 = −(1 + η0) sin(ΩMDMt) (38)

A32 = −
η0ΩEDM sin(ΩMDMt)

ΩMDM

+ η1ΩEDM

(
(ωa sin(ϕa) cos(ΩMDMt) − ωa sin(ωat+ ϕa)

(ωa −ΩMDM)(ωa +ΩMDM)

+
ΩMDM cos(ϕa) sin(ΩMDMt))

(ωa −ΩMDM)(ωa +ΩMDM)

)
(39)

A33 = (1 + η0) cos(ΩMDMt) (40)

Note that η = η0+η1 cos(ωat+ϕa). We are mainly interested in the entries A23 and
A21 which gives the vertical polarisation in case of an initial in plane polarisation.

B Variance on η1

B.1 Resonance case: variance of a slope

Starting point is equation 15

Pv(t) = PASv(t) = PAη1
ΩEDM

2
cos(ϕa) t. (41)

The variance on the slope parameter s = PAη1
ΩEDM

2 cos(ϕa) of a straight line
is

V (s) =
σ2

NpointsV (t)
,

where σ is the error on each individual point where the curve is measured. Npoints
is the number of points entering the fit and V (t) is the variance of the points
along the time axis. For evenly distributed values in a time interval T , one has
V (t) = T 2/12. If the polarization is determined from an azimuthal asymmetry one
has [18]:

σ2 =
2

n
,
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where n is the number of events entering the analysis for a single point. Evidently
for the total number of events one has Nf = nNpoints.

Putting everything together one finds

V (s) =
24

fNT 2
. (42)

Translated to the variance on η1 one finds the expression given in equation 17

V (η1) =
24

fN(PAT cos(ϕa))2

(
2

ΩEDM

)2
. (43)

B.2 Off-resonance case: variance of an amplitude

A polarization given by equation 18 leads to the following count rate in the detec-
tor:

N(t) ∝ 1 + η1
PAΩEDM

2∆ω
(− sin(ϕa) + sin(∆ωt+ ϕa)) cos(Φ) (44)

where Φ is the azimuthal angle of the scattered particle. There are three unknowns
η1, ∆ω and ϕa. To estimate the uncertainty on η1 we consider the extended max-
imum likelihood method applied to the counting rate in equation 44. The log-
likelihood function ` has the form

` =

Nevents∑
i=1

log
(

1 + η1
PAΩEDM

2∆ω
(− sin(ϕa) + sin(∆ωt+ ϕA)) cos(Φi)

)
− log(Ntot) ,

(45)
where Ntot is the total number of events detected.

To get the covariance matrix for the three unknowns η1,∆ω and ϕa one has to
consider the expectation values of the second derivatives of the likelihood function.

The the second derivative with respect to η1 it is for example given by〈
∂2`

∂η21

〉
=

∫ T

0

∂2`

∂η21
N(t)dt . (46)

For η1/∆ω � 1 and a measurement time T = 2π/∆ω (corresponding roughly
to the black curves in Figure 2), one finds for example for the error on η1:

σ2ϕa=0 =
1

(ΩEDMATP )2fN

128π2(15 + 2π2)

(3 + 4π2)
≈ 1033

(ΩEDMATP )2fN
(47)

for ϕa = 0 ,

σ2ϕa=π/2
=

1

(ΩEDMATP )2fN

128π2(15− 2π2)

33− 4π2
≈ 924

(ΩEDMATP )2fN
(48)

for ϕa =
π

2
.

Combining these two measurements leads to a

V (η1) =
488

(ΩEDMATP )2fN
(49)

which is approximately a factor 5 larger compared to the resonance case in equa-
tion 43.
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