000905231 001__ 905231
000905231 005__ 20230217124532.0
000905231 0247_ $$2doi$$a10.1038/s12276-021-00565-3
000905231 0247_ $$2ISSN$$a0378-8512
000905231 0247_ $$2ISSN$$a1226-3613
000905231 0247_ $$2ISSN$$a2092-6413
000905231 0247_ $$2Handle$$a2128/30204
000905231 0247_ $$2altmetric$$aaltmetric:99834652
000905231 0247_ $$2pmid$$apmid:33564101
000905231 0247_ $$2WOS$$aWOS:000616430900002
000905231 037__ $$aFZJ-2022-00514
000905231 082__ $$a540
000905231 1001_ $$00000-0002-5771-216X$$aHabib, Pardes$$b0$$eCorresponding author
000905231 245__ $$aPosthypoxic behavioral impairment and mortality of Drosophila melanogaster are associated with high temperatures, enhanced predeath activity and oxidative stress
000905231 260__ $$aSeoul$$bSoc.$$c2021
000905231 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2021-02-09
000905231 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-02-01
000905231 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-02-01
000905231 3367_ $$2DRIVER$$aarticle
000905231 3367_ $$2DataCite$$aOutput Types/Journal article
000905231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642087637_3687
000905231 3367_ $$2BibTeX$$aARTICLE
000905231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905231 3367_ $$00$$2EndNote$$aJournal Article
000905231 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000905231 542__ $$2Crossref$$i2021-02-01$$uhttps://creativecommons.org/licenses/by/4.0
000905231 542__ $$2Crossref$$i2021-02-09$$uhttps://creativecommons.org/licenses/by/4.0
000905231 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905231 7001_ $$0P:(DE-HGF)0$$aJung, Jennifer$$b1
000905231 7001_ $$0P:(DE-HGF)0$$aWilms, Gina Maria$$b2
000905231 7001_ $$0P:(DE-HGF)0$$aKokott-Vuong, Alma$$b3
000905231 7001_ $$aHabib, Shahin$$b4
000905231 7001_ $$0P:(DE-Juel1)171786$$aSchulz, Jörg B.$$b5
000905231 7001_ $$0P:(DE-HGF)0$$aVoigt, Aaron$$b6
000905231 77318 $$2Crossref$$3journal-article$$a10.1038/s12276-021-00565-3$$bSpringer Science and Business Media LLC$$d2021-02-01$$n2$$p264-280$$tExperimental & Molecular Medicine$$v53$$x1226-3613$$y2021
000905231 773__ $$0PERI:(DE-600)2084833-X$$a10.1038/s12276-021-00565-3$$gVol. 53, no. 2, p. 264 - 280$$n2$$p264-280$$tExperimental & molecular medicine$$v53$$x1226-3613$$y2021
000905231 8564_ $$uhttps://juser.fz-juelich.de/record/905231/files/s12276-021-00565-3.pdf$$yOpenAccess
000905231 909CO $$ooai:juser.fz-juelich.de:905231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171786$$aForschungszentrum Jülich$$b5$$kFZJ
000905231 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000905231 9141_ $$y2021
000905231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000905231 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000905231 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP MOL MED : 2015
000905231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000905231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000905231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000905231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905231 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEXP MOL MED : 2015
000905231 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000905231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000905231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000905231 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000905231 9801_ $$aFullTexts
000905231 980__ $$ajournal
000905231 980__ $$aVDB
000905231 980__ $$aUNRESTRICTED
000905231 980__ $$aI:(DE-Juel1)INM-11-20170113
000905231 999C5 $$2Crossref$$uDeepak, B., Ardekani, M. S., Shi, Q. & Movafagh, S. in Hypoxia and Human Diseases (eds Jing, Z. & Chi, Z.) Ch. 21 (IntechOpen, 2017).
000905231 999C5 $$1M Katan$$2Crossref$$9-- missing cx lookup --$$a10.1055/s-0038-1649503$$p208 -$$tSemin. Neurol.$$uKatan, M. & Luft, A. Global burden of stroke. Semin. Neurol. 38, 208–211 (2018).$$v38$$y2018
000905231 999C5 $$1P Venkat$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuropharm.2017.08.036$$p310 -$$tNeuropharmacology$$uVenkat, P., Shen, Y., Chopp, M. & Chen, J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 134, 310–322 (2018).$$v134$$y2018
000905231 999C5 $$1M Goyal$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(16)00163-X$$p1723 -$$tLancet$$uGoyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).$$v387$$y2016
000905231 999C5 $$1RG Nogueira$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1706442$$p11 -$$tN. Engl. J. Med.$$uNogueira, R. G. et al. Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018).$$v378$$y2018
000905231 999C5 $$1GW Albers$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1713973$$p708 -$$tN. Engl. J. Med.$$uAlbers, G. W. et al. Thrombectomy for stroke at 6 to 16 h with selection by perfusion imaging. N. Engl. J. Med. 378, 708–718 (2018).$$v378$$y2018
000905231 999C5 $$1MS Sun$$2Crossref$$uSun, M. S. et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell Longev. 2018, 3804979 (2018).$$y2018
000905231 999C5 $$1TE Lloyd$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1749-6632.2010.05432.x$$pe1 -$$tAnn. N. Y Acad. Sci.$$uLloyd, T. E. & Taylor, J. P. Flightless flies: Drosophila models of neuromuscular disease. Ann. N. Y Acad. Sci. 1184, e1–e20 (2010).$$v1184$$y2010
000905231 999C5 $$1J Bilen$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.genet.39.110304.095804$$p153 -$$tAnnu. Rev. Genet.$$uBilen, J. & Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).$$v39$$y2005
000905231 999C5 $$1Y Xia$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12264-017-0173-7$$p397 -$$tNeurosci. Bull.$$uXia, Y. et al. An efficient and reliable assay for investigating the effects of hypoxia/anoxia on Drosophila. Neurosci. Bull. 34, 397–402 (2018).$$v34$$y2018
000905231 999C5 $$1HM Den Hertog$$2Crossref$$uDen Hertog, H. M., van der Worp, H. B., Tseng, M. C. & Dippel, D. W. Cooling therapy for acute stroke. Cochrane Database Syst. Rev. 2009, Cd001247 (2009).$$y2009
000905231 999C5 $$1E Dinter$$2Crossref$$9-- missing cx lookup --$$a10.1111/jnc.13712$$p758 -$$tJ. Neurochem.$$uDinter, E. et al. Rab7 induces clearance of α-synuclein aggregates. J. Neurochem. 138, 758–774 (2016).$$v138$$y2016
000905231 999C5 $$1P Habib$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.expneurol.2019.112978$$p112978 -$$tExp. Neurol.$$uHabib, P. et al. EPO regulates neuroprotective transmembrane BAX inhibitor-1 motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp. Neurol. 320, 112978 (2019).$$v320$$y2019
000905231 999C5 $$1MA Saraiva$$2Crossref$$9-- missing cx lookup --$$a10.1155/2018/5456928$$p5456928 -$$tOxid. Med. Cell Longev.$$uSaraiva, M. A. et al. Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and modulates Nrf2 and HSP70/83. Oxid. Med. Cell Longev. 2018, 5456928 (2018).$$v2018$$y2018
000905231 999C5 $$1NC Bacon$$2Crossref$$9-- missing cx lookup --$$a10.1006/bbrc.1998.9234$$p811 -$$tBiochem. Biophys. Res. Commun.$$uBacon, N. C. et al. Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem. Biophys. Res. Commun. 249, 811–816 (1998).$$v249$$y1998
000905231 999C5 $$1T Misra$$2Crossref$$9-- missing cx lookup --$$a10.1242/bio.018226$$p296 -$$tBiol. Open$$uMisra, T. et al. A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol. Open 6, 296–304 (2017).$$v6$$y2017
000905231 999C5 $$1N Arquier$$2Crossref$$9-- missing cx lookup --$$a10.1042/BJ20050675$$p471 -$$tBiochem J.$$uArquier, N. et al. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J. 393, 471–480 (2006).$$v393$$y2006
000905231 999C5 $$1M Irisarri$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.e09-01-0038$$p3878 -$$tMol. Biol. Cell$$uIrisarri, M. et al. Central role of the oxygen-dependent degradation domain of Drosophila HIFalpha/Sima in oxygen-dependent nuclear export. Mol. Biol. Cell 20, 3878–3887 (2009).$$v20$$y2009
000905231 999C5 $$1S Lavista-Llanos$$2Crossref$$9-- missing cx lookup --$$a10.1128/MCB.22.19.6842-6853.2002$$p6842 -$$tMol. Cell Biol.$$uLavista-Llanos, S. et al. Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol. Cell Biol. 22, 6842–6853 (2002).$$v22$$y2002
000905231 999C5 $$1DL Carden$$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6$$p255 -$$tJ. Pathol.$$uCarden, D. L. & Granger, D. N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266 (2000).$$v190$$y2000
000905231 999C5 $$1T Mustoe$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0002-9610(03)00306-4$$p65s -$$tAm. J. Surg.$$uMustoe, T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 187, 65s–70s (2004).$$v187$$y2004
000905231 999C5 $$1OA Berkhemer$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1411587$$p11 -$$tN. Engl. J. Med.$$uBerkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).$$v372$$y2015
000905231 999C5 $$1JL Saver$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1415061$$p2285 -$$tN. Engl. J. Med.$$uSaver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015).$$v372$$y2015
000905231 999C5 $$1BC Campbell$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1414792$$p1009 -$$tN. Engl. J. Med.$$uCampbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015).$$v372$$y2015
000905231 999C5 $$1TG Jovin$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1503780$$p2296 -$$tN. Engl. J. Med.$$uJovin, T. G. et al. Thrombectomy within 8 h after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306 (2015).$$v372$$y2015
000905231 999C5 $$1R Bhatia$$2Crossref$$9-- missing cx lookup --$$a10.1161/STROKEAHA.110.592535$$p2254 -$$tStroke$$uBhatia, R. et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41, 2254–2258 (2010).$$v41$$y2010
000905231 999C5 $$1P Seners$$2Crossref$$9-- missing cx lookup --$$a10.1161/STROKEAHA.116.014181$$p2409 -$$tStroke$$uSeners, P. et al. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 47, 2409–2412 (2016).$$v47$$y2016
000905231 999C5 $$1JL Saver$$2Crossref$$9-- missing cx lookup --$$a10.1001/jama.2016.13647$$p1279 -$$tJama$$uSaver, J. L. et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama 316, 1279–1288 (2016).$$v316$$y2016
000905231 999C5 $$1A Mizuma$$2Crossref$$9-- missing cx lookup --$$a10.1161/STROKEAHA.117.017286$$p1796 -$$tStroke$$uMizuma, A., You, J. S. & Yenari, M. A. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 49, 1796–1802 (2018).$$v49$$y2018
000905231 999C5 $$1O Adeoye$$2Crossref$$9-- missing cx lookup --$$a10.1161/STROKEAHA.110.612358$$p1952 -$$tStroke$$uAdeoye, O., Hornung, R., Khatri, P. & Kleindorfer, D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42, 1952–1955 (2011).$$v42$$y2011
000905231 999C5 $$1AP Jadhav$$2Crossref$$9-- missing cx lookup --$$a10.1161/STROKEAHA.117.020273$$p1015 -$$tStroke$$uJadhav, A. P. et al. Eligibility for endovascular trial enrollment in the 6- to 24-hour time window: analysis of a single comprehensive stroke center. Stroke 49, 1015–1017 (2018).$$v49$$y2018
000905231 999C5 $$1JB Campbell$$2Crossref$$9-- missing cx lookup --$$a10.1152/ajpregu.00389.2018$$pR442 -$$tAm. J. Physiol. Regul. Integr. Comp. Physiol.$$uCampbell, J. B., Werkhoven, S. & Harrison, J. F. Metabolomics of anoxia tolerance in Drosophila melanogaster: evidence against substrate limitation and for roles of protective metabolites and paralytic hypometabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R442–r450 (2019).$$v317$$y2019
000905231 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(15)60690-0$$uEfficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386, 46–55 (2015).
000905231 999C5 $$1R Shirley$$2Crossref$$9-- missing cx lookup --$$a10.3390/antiox3030472$$p472 -$$tAntioxidants$$uShirley, R., Ord, E. N. & Work, L. M. Oxidative stress and the use of antioxidants in stroke. Antioxidants 3, 472–501 (2014).$$v3$$y2014
000905231 999C5 $$1I Žitňanová$$2Crossref$$9-- missing cx lookup --$$a10.1155/2016/9761697$$p9761697 -$$tOxid. Med. Cell Longev.$$uŽitňanová, I. et al. Oxidative stress markers and their dynamic changes in patients after acute ischemic stroke. Oxid. Med. Cell Longev. 2016, 9761697 (2016).$$v2016$$y2016
000905231 999C5 $$1I Olmez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuint.2011.11.009$$p208 -$$tNeurochem. Int.$$uOlmez, I. & Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. 60, 208–212 (2012).$$v60$$y2012
000905231 999C5 $$1TM Hemmen$$2Crossref$$9-- missing cx lookup --$$a10.1089/neu.2008.0574$$p387 -$$tJ. Neurotrauma$$uHemmen, T. M. & Lyden, P. D. Hypothermia after acute ischemic stroke. J. Neurotrauma 26, 387–391 (2009).$$v26$$y2009
000905231 999C5 $$1SS Song$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11940-012-0201-x$$p541 -$$tCurr. Treat. Options Neurol.$$uSong, S. S. & Lyden, P. D. Overview of therapeutic hypothermia. Curr. Treat. Options Neurol. 14, 541–548 (2012).$$v14$$y2012
000905231 999C5 $$1YJ Sun$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnins.2019.00586$$p586 -$$tFront. Neurosci.$$uSun, Y. J., Zhang, Z. Y., Fan, B. & Li, G. Y. Neuroprotection by therapeutic hypothermia. Front. Neurosci. 13, 586 (2019).$$v13$$y2019
000905231 999C5 $$1C Hajat$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.STR.31.2.410$$p410 -$$tStroke$$uHajat, C., Hajat, S. & Sharma, P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31, 410–414 (2000).$$v31$$y2000
000905231 999C5 $$1M Geurts$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12883-016-0760-7$$tBMC Neurol.$$uGeurts, M. et al. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome. BMC Neurol. 16, 233 (2016).$$v16$$y2016