001 | 905231 | ||
005 | 20230217124532.0 | ||
024 | 7 | _ | |a 10.1038/s12276-021-00565-3 |2 doi |
024 | 7 | _ | |a 0378-8512 |2 ISSN |
024 | 7 | _ | |a 1226-3613 |2 ISSN |
024 | 7 | _ | |a 2092-6413 |2 ISSN |
024 | 7 | _ | |a 2128/30204 |2 Handle |
024 | 7 | _ | |a altmetric:99834652 |2 altmetric |
024 | 7 | _ | |a pmid:33564101 |2 pmid |
024 | 7 | _ | |a WOS:000616430900002 |2 WOS |
037 | _ | _ | |a FZJ-2022-00514 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Habib, Pardes |0 0000-0002-5771-216X |b 0 |e Corresponding author |
245 | _ | _ | |a Posthypoxic behavioral impairment and mortality of Drosophila melanogaster are associated with high temperatures, enhanced predeath activity and oxidative stress |
260 | _ | _ | |a Seoul |c 2021 |b Soc. |
264 | _ | 1 | |3 online |2 Crossref |b Springer Science and Business Media LLC |c 2021-02-09 |
264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2021-02-01 |
264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2021-02-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642087637_3687 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
542 | _ | _ | |i 2021-02-01 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2021-02-09 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jung, Jennifer |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wilms, Gina Maria |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kokott-Vuong, Alma |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Habib, Shahin |b 4 |
700 | 1 | _ | |a Schulz, Jörg B. |0 P:(DE-Juel1)171786 |b 5 |
700 | 1 | _ | |a Voigt, Aaron |0 P:(DE-HGF)0 |b 6 |
773 | 1 | 8 | |a 10.1038/s12276-021-00565-3 |b Springer Science and Business Media LLC |d 2021-02-01 |n 2 |p 264-280 |3 journal-article |2 Crossref |t Experimental & Molecular Medicine |v 53 |y 2021 |x 1226-3613 |
773 | _ | _ | |a 10.1038/s12276-021-00565-3 |g Vol. 53, no. 2, p. 264 - 280 |0 PERI:(DE-600)2084833-X |n 2 |p 264-280 |t Experimental & molecular medicine |v 53 |y 2021 |x 1226-3613 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905231/files/s12276-021-00565-3.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:905231 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171786 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EXP MOL MED : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EXP MOL MED : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
999 | C | 5 | |2 Crossref |u Deepak, B., Ardekani, M. S., Shi, Q. & Movafagh, S. in Hypoxia and Human Diseases (eds Jing, Z. & Chi, Z.) Ch. 21 (IntechOpen, 2017). |
999 | C | 5 | |a 10.1055/s-0038-1649503 |9 -- missing cx lookup -- |1 M Katan |p 208 - |2 Crossref |u Katan, M. & Luft, A. Global burden of stroke. Semin. Neurol. 38, 208–211 (2018). |t Semin. Neurol. |v 38 |y 2018 |
999 | C | 5 | |a 10.1016/j.neuropharm.2017.08.036 |9 -- missing cx lookup -- |1 P Venkat |p 310 - |2 Crossref |u Venkat, P., Shen, Y., Chopp, M. & Chen, J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 134, 310–322 (2018). |t Neuropharmacology |v 134 |y 2018 |
999 | C | 5 | |a 10.1016/S0140-6736(16)00163-X |9 -- missing cx lookup -- |1 M Goyal |p 1723 - |2 Crossref |u Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016). |t Lancet |v 387 |y 2016 |
999 | C | 5 | |a 10.1056/NEJMoa1706442 |9 -- missing cx lookup -- |1 RG Nogueira |p 11 - |2 Crossref |u Nogueira, R. G. et al. Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018). |t N. Engl. J. Med. |v 378 |y 2018 |
999 | C | 5 | |a 10.1056/NEJMoa1713973 |9 -- missing cx lookup -- |1 GW Albers |p 708 - |2 Crossref |u Albers, G. W. et al. Thrombectomy for stroke at 6 to 16 h with selection by perfusion imaging. N. Engl. J. Med. 378, 708–718 (2018). |t N. Engl. J. Med. |v 378 |y 2018 |
999 | C | 5 | |1 MS Sun |y 2018 |2 Crossref |u Sun, M. S. et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell Longev. 2018, 3804979 (2018). |
999 | C | 5 | |a 10.1111/j.1749-6632.2010.05432.x |9 -- missing cx lookup -- |1 TE Lloyd |p e1 - |2 Crossref |u Lloyd, T. E. & Taylor, J. P. Flightless flies: Drosophila models of neuromuscular disease. Ann. N. Y Acad. Sci. 1184, e1–e20 (2010). |t Ann. N. Y Acad. Sci. |v 1184 |y 2010 |
999 | C | 5 | |a 10.1146/annurev.genet.39.110304.095804 |9 -- missing cx lookup -- |1 J Bilen |p 153 - |2 Crossref |u Bilen, J. & Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005). |t Annu. Rev. Genet. |v 39 |y 2005 |
999 | C | 5 | |a 10.1007/s12264-017-0173-7 |9 -- missing cx lookup -- |1 Y Xia |p 397 - |2 Crossref |u Xia, Y. et al. An efficient and reliable assay for investigating the effects of hypoxia/anoxia on Drosophila. Neurosci. Bull. 34, 397–402 (2018). |t Neurosci. Bull. |v 34 |y 2018 |
999 | C | 5 | |1 HM Den Hertog |y 2009 |2 Crossref |u Den Hertog, H. M., van der Worp, H. B., Tseng, M. C. & Dippel, D. W. Cooling therapy for acute stroke. Cochrane Database Syst. Rev. 2009, Cd001247 (2009). |
999 | C | 5 | |a 10.1111/jnc.13712 |9 -- missing cx lookup -- |1 E Dinter |p 758 - |2 Crossref |u Dinter, E. et al. Rab7 induces clearance of α-synuclein aggregates. J. Neurochem. 138, 758–774 (2016). |t J. Neurochem. |v 138 |y 2016 |
999 | C | 5 | |a 10.1016/j.expneurol.2019.112978 |9 -- missing cx lookup -- |1 P Habib |p 112978 - |2 Crossref |u Habib, P. et al. EPO regulates neuroprotective transmembrane BAX inhibitor-1 motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp. Neurol. 320, 112978 (2019). |t Exp. Neurol. |v 320 |y 2019 |
999 | C | 5 | |a 10.1155/2018/5456928 |9 -- missing cx lookup -- |1 MA Saraiva |p 5456928 - |2 Crossref |u Saraiva, M. A. et al. Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and modulates Nrf2 and HSP70/83. Oxid. Med. Cell Longev. 2018, 5456928 (2018). |t Oxid. Med. Cell Longev. |v 2018 |y 2018 |
999 | C | 5 | |a 10.1006/bbrc.1998.9234 |9 -- missing cx lookup -- |1 NC Bacon |p 811 - |2 Crossref |u Bacon, N. C. et al. Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem. Biophys. Res. Commun. 249, 811–816 (1998). |t Biochem. Biophys. Res. Commun. |v 249 |y 1998 |
999 | C | 5 | |a 10.1242/bio.018226 |9 -- missing cx lookup -- |1 T Misra |p 296 - |2 Crossref |u Misra, T. et al. A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol. Open 6, 296–304 (2017). |t Biol. Open |v 6 |y 2017 |
999 | C | 5 | |a 10.1042/BJ20050675 |9 -- missing cx lookup -- |1 N Arquier |p 471 - |2 Crossref |u Arquier, N. et al. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J. 393, 471–480 (2006). |t Biochem J. |v 393 |y 2006 |
999 | C | 5 | |a 10.1091/mbc.e09-01-0038 |9 -- missing cx lookup -- |1 M Irisarri |p 3878 - |2 Crossref |u Irisarri, M. et al. Central role of the oxygen-dependent degradation domain of Drosophila HIFalpha/Sima in oxygen-dependent nuclear export. Mol. Biol. Cell 20, 3878–3887 (2009). |t Mol. Biol. Cell |v 20 |y 2009 |
999 | C | 5 | |a 10.1128/MCB.22.19.6842-6853.2002 |9 -- missing cx lookup -- |1 S Lavista-Llanos |p 6842 - |2 Crossref |u Lavista-Llanos, S. et al. Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol. Cell Biol. 22, 6842–6853 (2002). |t Mol. Cell Biol. |v 22 |y 2002 |
999 | C | 5 | |a 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6 |9 -- missing cx lookup -- |1 DL Carden |p 255 - |2 Crossref |u Carden, D. L. & Granger, D. N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266 (2000). |t J. Pathol. |v 190 |y 2000 |
999 | C | 5 | |a 10.1016/S0002-9610(03)00306-4 |9 -- missing cx lookup -- |1 T Mustoe |p 65s - |2 Crossref |u Mustoe, T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 187, 65s–70s (2004). |t Am. J. Surg. |v 187 |y 2004 |
999 | C | 5 | |a 10.1056/NEJMoa1411587 |9 -- missing cx lookup -- |1 OA Berkhemer |p 11 - |2 Crossref |u Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015). |t N. Engl. J. Med. |v 372 |y 2015 |
999 | C | 5 | |a 10.1056/NEJMoa1415061 |9 -- missing cx lookup -- |1 JL Saver |p 2285 - |2 Crossref |u Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015). |t N. Engl. J. Med. |v 372 |y 2015 |
999 | C | 5 | |a 10.1056/NEJMoa1414792 |9 -- missing cx lookup -- |1 BC Campbell |p 1009 - |2 Crossref |u Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015). |t N. Engl. J. Med. |v 372 |y 2015 |
999 | C | 5 | |a 10.1056/NEJMoa1503780 |9 -- missing cx lookup -- |1 TG Jovin |p 2296 - |2 Crossref |u Jovin, T. G. et al. Thrombectomy within 8 h after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306 (2015). |t N. Engl. J. Med. |v 372 |y 2015 |
999 | C | 5 | |a 10.1161/STROKEAHA.110.592535 |9 -- missing cx lookup -- |1 R Bhatia |p 2254 - |2 Crossref |u Bhatia, R. et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41, 2254–2258 (2010). |t Stroke |v 41 |y 2010 |
999 | C | 5 | |a 10.1161/STROKEAHA.116.014181 |9 -- missing cx lookup -- |1 P Seners |p 2409 - |2 Crossref |u Seners, P. et al. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 47, 2409–2412 (2016). |t Stroke |v 47 |y 2016 |
999 | C | 5 | |a 10.1001/jama.2016.13647 |9 -- missing cx lookup -- |1 JL Saver |p 1279 - |2 Crossref |u Saver, J. L. et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama 316, 1279–1288 (2016). |t Jama |v 316 |y 2016 |
999 | C | 5 | |a 10.1161/STROKEAHA.117.017286 |9 -- missing cx lookup -- |1 A Mizuma |p 1796 - |2 Crossref |u Mizuma, A., You, J. S. & Yenari, M. A. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 49, 1796–1802 (2018). |t Stroke |v 49 |y 2018 |
999 | C | 5 | |a 10.1161/STROKEAHA.110.612358 |9 -- missing cx lookup -- |1 O Adeoye |p 1952 - |2 Crossref |u Adeoye, O., Hornung, R., Khatri, P. & Kleindorfer, D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42, 1952–1955 (2011). |t Stroke |v 42 |y 2011 |
999 | C | 5 | |a 10.1161/STROKEAHA.117.020273 |9 -- missing cx lookup -- |1 AP Jadhav |p 1015 - |2 Crossref |u Jadhav, A. P. et al. Eligibility for endovascular trial enrollment in the 6- to 24-hour time window: analysis of a single comprehensive stroke center. Stroke 49, 1015–1017 (2018). |t Stroke |v 49 |y 2018 |
999 | C | 5 | |a 10.1152/ajpregu.00389.2018 |9 -- missing cx lookup -- |1 JB Campbell |p R442 - |2 Crossref |u Campbell, J. B., Werkhoven, S. & Harrison, J. F. Metabolomics of anoxia tolerance in Drosophila melanogaster: evidence against substrate limitation and for roles of protective metabolites and paralytic hypometabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R442–r450 (2019). |t Am. J. Physiol. Regul. Integr. Comp. Physiol. |v 317 |y 2019 |
999 | C | 5 | |a 10.1016/S0140-6736(15)60690-0 |9 -- missing cx lookup -- |2 Crossref |u Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386, 46–55 (2015). |
999 | C | 5 | |a 10.3390/antiox3030472 |9 -- missing cx lookup -- |1 R Shirley |p 472 - |2 Crossref |u Shirley, R., Ord, E. N. & Work, L. M. Oxidative stress and the use of antioxidants in stroke. Antioxidants 3, 472–501 (2014). |t Antioxidants |v 3 |y 2014 |
999 | C | 5 | |a 10.1155/2016/9761697 |9 -- missing cx lookup -- |1 I Žitňanová |p 9761697 - |2 Crossref |u Žitňanová, I. et al. Oxidative stress markers and their dynamic changes in patients after acute ischemic stroke. Oxid. Med. Cell Longev. 2016, 9761697 (2016). |t Oxid. Med. Cell Longev. |v 2016 |y 2016 |
999 | C | 5 | |a 10.1016/j.neuint.2011.11.009 |9 -- missing cx lookup -- |1 I Olmez |p 208 - |2 Crossref |u Olmez, I. & Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. 60, 208–212 (2012). |t Neurochem. Int. |v 60 |y 2012 |
999 | C | 5 | |a 10.1089/neu.2008.0574 |9 -- missing cx lookup -- |1 TM Hemmen |p 387 - |2 Crossref |u Hemmen, T. M. & Lyden, P. D. Hypothermia after acute ischemic stroke. J. Neurotrauma 26, 387–391 (2009). |t J. Neurotrauma |v 26 |y 2009 |
999 | C | 5 | |a 10.1007/s11940-012-0201-x |9 -- missing cx lookup -- |1 SS Song |p 541 - |2 Crossref |u Song, S. S. & Lyden, P. D. Overview of therapeutic hypothermia. Curr. Treat. Options Neurol. 14, 541–548 (2012). |t Curr. Treat. Options Neurol. |v 14 |y 2012 |
999 | C | 5 | |a 10.3389/fnins.2019.00586 |9 -- missing cx lookup -- |1 YJ Sun |p 586 - |2 Crossref |u Sun, Y. J., Zhang, Z. Y., Fan, B. & Li, G. Y. Neuroprotection by therapeutic hypothermia. Front. Neurosci. 13, 586 (2019). |t Front. Neurosci. |v 13 |y 2019 |
999 | C | 5 | |a 10.1161/01.STR.31.2.410 |9 -- missing cx lookup -- |1 C Hajat |p 410 - |2 Crossref |u Hajat, C., Hajat, S. & Sharma, P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31, 410–414 (2000). |t Stroke |v 31 |y 2000 |
999 | C | 5 | |a 10.1186/s12883-016-0760-7 |1 M Geurts |9 -- missing cx lookup -- |2 Crossref |u Geurts, M. et al. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome. BMC Neurol. 16, 233 (2016). |t BMC Neurol. |v 16 |y 2016 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|