001     905231
005     20230217124532.0
024 7 _ |a 10.1038/s12276-021-00565-3
|2 doi
024 7 _ |a 0378-8512
|2 ISSN
024 7 _ |a 1226-3613
|2 ISSN
024 7 _ |a 2092-6413
|2 ISSN
024 7 _ |a 2128/30204
|2 Handle
024 7 _ |a altmetric:99834652
|2 altmetric
024 7 _ |a pmid:33564101
|2 pmid
024 7 _ |a WOS:000616430900002
|2 WOS
037 _ _ |a FZJ-2022-00514
082 _ _ |a 540
100 1 _ |a Habib, Pardes
|0 0000-0002-5771-216X
|b 0
|e Corresponding author
245 _ _ |a Posthypoxic behavioral impairment and mortality of Drosophila melanogaster are associated with high temperatures, enhanced predeath activity and oxidative stress
260 _ _ |a Seoul
|c 2021
|b Soc.
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2021-02-09
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2021-02-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2021-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642087637_3687
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
542 _ _ |i 2021-02-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2021-02-09
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jung, Jennifer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wilms, Gina Maria
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kokott-Vuong, Alma
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Habib, Shahin
|b 4
700 1 _ |a Schulz, Jörg B.
|0 P:(DE-Juel1)171786
|b 5
700 1 _ |a Voigt, Aaron
|0 P:(DE-HGF)0
|b 6
773 1 8 |a 10.1038/s12276-021-00565-3
|b Springer Science and Business Media LLC
|d 2021-02-01
|n 2
|p 264-280
|3 journal-article
|2 Crossref
|t Experimental & Molecular Medicine
|v 53
|y 2021
|x 1226-3613
773 _ _ |a 10.1038/s12276-021-00565-3
|g Vol. 53, no. 2, p. 264 - 280
|0 PERI:(DE-600)2084833-X
|n 2
|p 264-280
|t Experimental & molecular medicine
|v 53
|y 2021
|x 1226-3613
856 4 _ |u https://juser.fz-juelich.de/record/905231/files/s12276-021-00565-3.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905231
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171786
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP MOL MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EXP MOL MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-11-20170113
999 C 5 |2 Crossref
|u Deepak, B., Ardekani, M. S., Shi, Q. & Movafagh, S. in Hypoxia and Human Diseases (eds Jing, Z. & Chi, Z.) Ch. 21 (IntechOpen, 2017).
999 C 5 |a 10.1055/s-0038-1649503
|9 -- missing cx lookup --
|1 M Katan
|p 208 -
|2 Crossref
|u Katan, M. & Luft, A. Global burden of stroke. Semin. Neurol. 38, 208–211 (2018).
|t Semin. Neurol.
|v 38
|y 2018
999 C 5 |a 10.1016/j.neuropharm.2017.08.036
|9 -- missing cx lookup --
|1 P Venkat
|p 310 -
|2 Crossref
|u Venkat, P., Shen, Y., Chopp, M. & Chen, J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 134, 310–322 (2018).
|t Neuropharmacology
|v 134
|y 2018
999 C 5 |a 10.1016/S0140-6736(16)00163-X
|9 -- missing cx lookup --
|1 M Goyal
|p 1723 -
|2 Crossref
|u Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).
|t Lancet
|v 387
|y 2016
999 C 5 |a 10.1056/NEJMoa1706442
|9 -- missing cx lookup --
|1 RG Nogueira
|p 11 -
|2 Crossref
|u Nogueira, R. G. et al. Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018).
|t N. Engl. J. Med.
|v 378
|y 2018
999 C 5 |a 10.1056/NEJMoa1713973
|9 -- missing cx lookup --
|1 GW Albers
|p 708 -
|2 Crossref
|u Albers, G. W. et al. Thrombectomy for stroke at 6 to 16 h with selection by perfusion imaging. N. Engl. J. Med. 378, 708–718 (2018).
|t N. Engl. J. Med.
|v 378
|y 2018
999 C 5 |1 MS Sun
|y 2018
|2 Crossref
|u Sun, M. S. et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell Longev. 2018, 3804979 (2018).
999 C 5 |a 10.1111/j.1749-6632.2010.05432.x
|9 -- missing cx lookup --
|1 TE Lloyd
|p e1 -
|2 Crossref
|u Lloyd, T. E. & Taylor, J. P. Flightless flies: Drosophila models of neuromuscular disease. Ann. N. Y Acad. Sci. 1184, e1–e20 (2010).
|t Ann. N. Y Acad. Sci.
|v 1184
|y 2010
999 C 5 |a 10.1146/annurev.genet.39.110304.095804
|9 -- missing cx lookup --
|1 J Bilen
|p 153 -
|2 Crossref
|u Bilen, J. & Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).
|t Annu. Rev. Genet.
|v 39
|y 2005
999 C 5 |a 10.1007/s12264-017-0173-7
|9 -- missing cx lookup --
|1 Y Xia
|p 397 -
|2 Crossref
|u Xia, Y. et al. An efficient and reliable assay for investigating the effects of hypoxia/anoxia on Drosophila. Neurosci. Bull. 34, 397–402 (2018).
|t Neurosci. Bull.
|v 34
|y 2018
999 C 5 |1 HM Den Hertog
|y 2009
|2 Crossref
|u Den Hertog, H. M., van der Worp, H. B., Tseng, M. C. & Dippel, D. W. Cooling therapy for acute stroke. Cochrane Database Syst. Rev. 2009, Cd001247 (2009).
999 C 5 |a 10.1111/jnc.13712
|9 -- missing cx lookup --
|1 E Dinter
|p 758 -
|2 Crossref
|u Dinter, E. et al. Rab7 induces clearance of α-synuclein aggregates. J. Neurochem. 138, 758–774 (2016).
|t J. Neurochem.
|v 138
|y 2016
999 C 5 |a 10.1016/j.expneurol.2019.112978
|9 -- missing cx lookup --
|1 P Habib
|p 112978 -
|2 Crossref
|u Habib, P. et al. EPO regulates neuroprotective transmembrane BAX inhibitor-1 motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp. Neurol. 320, 112978 (2019).
|t Exp. Neurol.
|v 320
|y 2019
999 C 5 |a 10.1155/2018/5456928
|9 -- missing cx lookup --
|1 MA Saraiva
|p 5456928 -
|2 Crossref
|u Saraiva, M. A. et al. Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and modulates Nrf2 and HSP70/83. Oxid. Med. Cell Longev. 2018, 5456928 (2018).
|t Oxid. Med. Cell Longev.
|v 2018
|y 2018
999 C 5 |a 10.1006/bbrc.1998.9234
|9 -- missing cx lookup --
|1 NC Bacon
|p 811 -
|2 Crossref
|u Bacon, N. C. et al. Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem. Biophys. Res. Commun. 249, 811–816 (1998).
|t Biochem. Biophys. Res. Commun.
|v 249
|y 1998
999 C 5 |a 10.1242/bio.018226
|9 -- missing cx lookup --
|1 T Misra
|p 296 -
|2 Crossref
|u Misra, T. et al. A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol. Open 6, 296–304 (2017).
|t Biol. Open
|v 6
|y 2017
999 C 5 |a 10.1042/BJ20050675
|9 -- missing cx lookup --
|1 N Arquier
|p 471 -
|2 Crossref
|u Arquier, N. et al. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J. 393, 471–480 (2006).
|t Biochem J.
|v 393
|y 2006
999 C 5 |a 10.1091/mbc.e09-01-0038
|9 -- missing cx lookup --
|1 M Irisarri
|p 3878 -
|2 Crossref
|u Irisarri, M. et al. Central role of the oxygen-dependent degradation domain of Drosophila HIFalpha/Sima in oxygen-dependent nuclear export. Mol. Biol. Cell 20, 3878–3887 (2009).
|t Mol. Biol. Cell
|v 20
|y 2009
999 C 5 |a 10.1128/MCB.22.19.6842-6853.2002
|9 -- missing cx lookup --
|1 S Lavista-Llanos
|p 6842 -
|2 Crossref
|u Lavista-Llanos, S. et al. Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol. Cell Biol. 22, 6842–6853 (2002).
|t Mol. Cell Biol.
|v 22
|y 2002
999 C 5 |a 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6
|9 -- missing cx lookup --
|1 DL Carden
|p 255 -
|2 Crossref
|u Carden, D. L. & Granger, D. N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266 (2000).
|t J. Pathol.
|v 190
|y 2000
999 C 5 |a 10.1016/S0002-9610(03)00306-4
|9 -- missing cx lookup --
|1 T Mustoe
|p 65s -
|2 Crossref
|u Mustoe, T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 187, 65s–70s (2004).
|t Am. J. Surg.
|v 187
|y 2004
999 C 5 |a 10.1056/NEJMoa1411587
|9 -- missing cx lookup --
|1 OA Berkhemer
|p 11 -
|2 Crossref
|u Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).
|t N. Engl. J. Med.
|v 372
|y 2015
999 C 5 |a 10.1056/NEJMoa1415061
|9 -- missing cx lookup --
|1 JL Saver
|p 2285 -
|2 Crossref
|u Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015).
|t N. Engl. J. Med.
|v 372
|y 2015
999 C 5 |a 10.1056/NEJMoa1414792
|9 -- missing cx lookup --
|1 BC Campbell
|p 1009 -
|2 Crossref
|u Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015).
|t N. Engl. J. Med.
|v 372
|y 2015
999 C 5 |a 10.1056/NEJMoa1503780
|9 -- missing cx lookup --
|1 TG Jovin
|p 2296 -
|2 Crossref
|u Jovin, T. G. et al. Thrombectomy within 8 h after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306 (2015).
|t N. Engl. J. Med.
|v 372
|y 2015
999 C 5 |a 10.1161/STROKEAHA.110.592535
|9 -- missing cx lookup --
|1 R Bhatia
|p 2254 -
|2 Crossref
|u Bhatia, R. et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41, 2254–2258 (2010).
|t Stroke
|v 41
|y 2010
999 C 5 |a 10.1161/STROKEAHA.116.014181
|9 -- missing cx lookup --
|1 P Seners
|p 2409 -
|2 Crossref
|u Seners, P. et al. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 47, 2409–2412 (2016).
|t Stroke
|v 47
|y 2016
999 C 5 |a 10.1001/jama.2016.13647
|9 -- missing cx lookup --
|1 JL Saver
|p 1279 -
|2 Crossref
|u Saver, J. L. et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama 316, 1279–1288 (2016).
|t Jama
|v 316
|y 2016
999 C 5 |a 10.1161/STROKEAHA.117.017286
|9 -- missing cx lookup --
|1 A Mizuma
|p 1796 -
|2 Crossref
|u Mizuma, A., You, J. S. & Yenari, M. A. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 49, 1796–1802 (2018).
|t Stroke
|v 49
|y 2018
999 C 5 |a 10.1161/STROKEAHA.110.612358
|9 -- missing cx lookup --
|1 O Adeoye
|p 1952 -
|2 Crossref
|u Adeoye, O., Hornung, R., Khatri, P. & Kleindorfer, D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42, 1952–1955 (2011).
|t Stroke
|v 42
|y 2011
999 C 5 |a 10.1161/STROKEAHA.117.020273
|9 -- missing cx lookup --
|1 AP Jadhav
|p 1015 -
|2 Crossref
|u Jadhav, A. P. et al. Eligibility for endovascular trial enrollment in the 6- to 24-hour time window: analysis of a single comprehensive stroke center. Stroke 49, 1015–1017 (2018).
|t Stroke
|v 49
|y 2018
999 C 5 |a 10.1152/ajpregu.00389.2018
|9 -- missing cx lookup --
|1 JB Campbell
|p R442 -
|2 Crossref
|u Campbell, J. B., Werkhoven, S. & Harrison, J. F. Metabolomics of anoxia tolerance in Drosophila melanogaster: evidence against substrate limitation and for roles of protective metabolites and paralytic hypometabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R442–r450 (2019).
|t Am. J. Physiol. Regul. Integr. Comp. Physiol.
|v 317
|y 2019
999 C 5 |a 10.1016/S0140-6736(15)60690-0
|9 -- missing cx lookup --
|2 Crossref
|u Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386, 46–55 (2015).
999 C 5 |a 10.3390/antiox3030472
|9 -- missing cx lookup --
|1 R Shirley
|p 472 -
|2 Crossref
|u Shirley, R., Ord, E. N. & Work, L. M. Oxidative stress and the use of antioxidants in stroke. Antioxidants 3, 472–501 (2014).
|t Antioxidants
|v 3
|y 2014
999 C 5 |a 10.1155/2016/9761697
|9 -- missing cx lookup --
|1 I Žitňanová
|p 9761697 -
|2 Crossref
|u Žitňanová, I. et al. Oxidative stress markers and their dynamic changes in patients after acute ischemic stroke. Oxid. Med. Cell Longev. 2016, 9761697 (2016).
|t Oxid. Med. Cell Longev.
|v 2016
|y 2016
999 C 5 |a 10.1016/j.neuint.2011.11.009
|9 -- missing cx lookup --
|1 I Olmez
|p 208 -
|2 Crossref
|u Olmez, I. & Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. 60, 208–212 (2012).
|t Neurochem. Int.
|v 60
|y 2012
999 C 5 |a 10.1089/neu.2008.0574
|9 -- missing cx lookup --
|1 TM Hemmen
|p 387 -
|2 Crossref
|u Hemmen, T. M. & Lyden, P. D. Hypothermia after acute ischemic stroke. J. Neurotrauma 26, 387–391 (2009).
|t J. Neurotrauma
|v 26
|y 2009
999 C 5 |a 10.1007/s11940-012-0201-x
|9 -- missing cx lookup --
|1 SS Song
|p 541 -
|2 Crossref
|u Song, S. S. & Lyden, P. D. Overview of therapeutic hypothermia. Curr. Treat. Options Neurol. 14, 541–548 (2012).
|t Curr. Treat. Options Neurol.
|v 14
|y 2012
999 C 5 |a 10.3389/fnins.2019.00586
|9 -- missing cx lookup --
|1 YJ Sun
|p 586 -
|2 Crossref
|u Sun, Y. J., Zhang, Z. Y., Fan, B. & Li, G. Y. Neuroprotection by therapeutic hypothermia. Front. Neurosci. 13, 586 (2019).
|t Front. Neurosci.
|v 13
|y 2019
999 C 5 |a 10.1161/01.STR.31.2.410
|9 -- missing cx lookup --
|1 C Hajat
|p 410 -
|2 Crossref
|u Hajat, C., Hajat, S. & Sharma, P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31, 410–414 (2000).
|t Stroke
|v 31
|y 2000
999 C 5 |a 10.1186/s12883-016-0760-7
|1 M Geurts
|9 -- missing cx lookup --
|2 Crossref
|u Geurts, M. et al. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome. BMC Neurol. 16, 233 (2016).
|t BMC Neurol.
|v 16
|y 2016


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21