001     905236
005     20220131120322.0
037 _ _ |a FZJ-2022-00519
041 _ _ |a English
100 1 _ |a Popovych, Oleksandr
|0 P:(DE-Juel1)131880
|b 0
|e Corresponding author
|u fzj
111 2 _ |a SIAM Conference on Applications of Dynamical Systems (DS21)
|c Virtual Conference
|d 2021-05-23 - 2021-05-27
|w USA
245 _ _ |a Impact of Brain Parcellation and Empirical Data on Modeling of the Resting-State Brain Dynamics
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1642507934_6597
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Modern approaches to investigation of complex brain dynamics suggest to represent the brain as a functional network where nodes encapsulate brain-region-specific function while edges consolidate the structural or functional connectivity among these regions. Brain regions can be delimited using a parcellation, i.e., brain atlas. There is however no consensus on which brain atlas is more adequate for one or another analysis. We address this problem by a dynamical modeling approach, where the resting-state brain dynamics is simulated by the whole-brain personalized models derived from and validated against empirical neuroimaging structural and functional data. We investigate the impact of the fitting modalities and brain atlases based on distinct anatomical and functional parcellation techniques. We show that these simulation conditions may strongly influence the modeling results including the quality of the model fitting and structure of the model parameter space. We also assess the variation of the fitting results across subjects and parcellations and observe that variation of selected data indices extracted from the experimental data may greatly account for the variations in the fitting results. At this, a few correlative types of the data variables can be distinguished depending on their intra- and inter-parcellation explanatory power. The obtained results can contribute to the improvement of the resting-state brain modeling and data analytics.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 2
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |a VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)
|0 G:(EU-Grant)826421
|c 826421
|f H2020-SC1-DTH-2018-1
|x 5
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 1
|u fzj
700 1 _ |a Manos, Thanos
|0 P:(DE-Juel1)164577
|b 2
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 3
|u fzj
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 4
|u fzj
700 1 _ |a Schreiber, Jan
|0 P:(DE-Juel1)169295
|b 5
700 1 _ |a Thomas Yeo, B. T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 7
|u fzj
856 4 _ |u https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=71474
909 C O |o oai:juser.fz-juelich.de:905236
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131880
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a National University of Singapore
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 2
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21