000905258 001__ 905258
000905258 005__ 20230110132134.0
000905258 0247_ $$2Handle$$a2128/33424
000905258 037__ $$aFZJ-2022-00541
000905258 041__ $$aEnglish
000905258 1001_ $$0P:(DE-Juel1)178756$$aWischnewski, Kevin$$b0$$eCorresponding author$$ufzj
000905258 1112_ $$aINM & IBI Retreat 2021, Forschungszentrum Jülich$$cVirtual Conference$$d2021-10-05 - 2021-10-06$$wGermany
000905258 245__ $$aEfficient validation of dynamical whole-brain models via mathematical optimization algorithms
000905258 260__ $$c2021
000905258 3367_ $$033$$2EndNote$$aConference Paper
000905258 3367_ $$2BibTeX$$aINPROCEEDINGS
000905258 3367_ $$2DRIVER$$aconferenceObject
000905258 3367_ $$2ORCID$$aCONFERENCE_POSTER
000905258 3367_ $$2DataCite$$aOutput Types/Conference Poster
000905258 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1673273257_7573$$xAfter Call
000905258 520__ $$aInvestigating the resting-state brain dynamics involves its simulation via mathematical whole-brainmodels. The quality of the models’ output and its benefit for further studies, however, depend onoptimally selected input parameters, whose detection via systematic parameter space scans becomespractically unfeasible for high-dimensional models. In our work, we thus test and analyze severalalternative approaches to solve the so-called inverse problem that consists of a parameter-dependentmaximization of the models’ goodness-of-fit to empirical data. An exhaustive parameter variationon a dense grid serves as a benchmark to assess the performance of four optimization schemes:Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix AdaptationEvolution Strategy (CMAES) and Bayesian Optimization (BO). To compare the methods, we employa dynamical model of coupled phase oscillators built upon the individual empirical structural connectivities of a cohort of 105 healthy subjects. For each subject, we determine the optimal modelparameters from two- and three-dimensional parameter spaces to maximize the correspondencebetween simulated and empirical functional connectivity. We show that the overall fitting quality of the tested methods can compete with the extensive parameter sweep exploration. There are,however, marked differences in the required computational resources and stability properties ofthe investigated techniques. By considering a trade-off between enhanced global convergence andthe economy of computation time, we propose two approaches, CMAES and BO, as effective andresource-saving alternatives to a high-dimensional parameter search on a dense grid. For the three-dimensional parameter optimization, they generated similar results as the grid search, but withinless than 6% of the required computation time. Our results can contribute to an efficient validationof mathematical models for personalized simulations of brain dynamics.
000905258 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000905258 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000905258 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000905258 536__ $$0G:(EU-Grant)826421$$aVirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)$$c826421$$fH2020-SC1-DTH-2018-1$$x3
000905258 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000905258 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b1$$ufzj
000905258 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b2$$ufzj
000905258 8564_ $$uhttps://events.hifis.net/event/161/
000905258 8564_ $$uhttps://juser.fz-juelich.de/record/905258/files/Poster_INM_IBI_Retreat_2021.pdf$$yOpenAccess
000905258 909CO $$ooai:juser.fz-juelich.de:905258$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
000905258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178756$$aForschungszentrum Jülich$$b0$$kFZJ
000905258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000905258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b2$$kFZJ
000905258 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000905258 9141_ $$y2021
000905258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905258 920__ $$lyes
000905258 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000905258 980__ $$aposter
000905258 980__ $$aVDB
000905258 980__ $$aI:(DE-Juel1)INM-7-20090406
000905258 980__ $$aUNRESTRICTED
000905258 9801_ $$aFullTexts