001     905258
005     20230110132134.0
024 7 _ |a 2128/33424
|2 Handle
037 _ _ |a FZJ-2022-00541
041 _ _ |a English
100 1 _ |a Wischnewski, Kevin
|0 P:(DE-Juel1)178756
|b 0
|e Corresponding author
|u fzj
111 2 _ |a INM & IBI Retreat 2021, Forschungszentrum Jülich
|c Virtual Conference
|d 2021-10-05 - 2021-10-06
|w Germany
245 _ _ |a Efficient validation of dynamical whole-brain models via mathematical optimization algorithms
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1673273257_7573
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Investigating the resting-state brain dynamics involves its simulation via mathematical whole-brainmodels. The quality of the models’ output and its benefit for further studies, however, depend onoptimally selected input parameters, whose detection via systematic parameter space scans becomespractically unfeasible for high-dimensional models. In our work, we thus test and analyze severalalternative approaches to solve the so-called inverse problem that consists of a parameter-dependentmaximization of the models’ goodness-of-fit to empirical data. An exhaustive parameter variationon a dense grid serves as a benchmark to assess the performance of four optimization schemes:Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix AdaptationEvolution Strategy (CMAES) and Bayesian Optimization (BO). To compare the methods, we employa dynamical model of coupled phase oscillators built upon the individual empirical structural connectivities of a cohort of 105 healthy subjects. For each subject, we determine the optimal modelparameters from two- and three-dimensional parameter spaces to maximize the correspondencebetween simulated and empirical functional connectivity. We show that the overall fitting quality of the tested methods can compete with the extensive parameter sweep exploration. There are,however, marked differences in the required computational resources and stability properties ofthe investigated techniques. By considering a trade-off between enhanced global convergence andthe economy of computation time, we propose two approaches, CMAES and BO, as effective andresource-saving alternatives to a high-dimensional parameter search on a dense grid. For the three-dimensional parameter optimization, they generated similar results as the grid search, but withinless than 6% of the required computation time. Our results can contribute to an efficient validationof mathematical models for personalized simulations of brain dynamics.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)
|0 G:(EU-Grant)826421
|c 826421
|f H2020-SC1-DTH-2018-1
|x 3
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 1
|u fzj
700 1 _ |a Popovych, Oleksandr
|0 P:(DE-Juel1)131880
|b 2
|u fzj
856 4 _ |u https://events.hifis.net/event/161/
856 4 _ |u https://juser.fz-juelich.de/record/905258/files/Poster_INM_IBI_Retreat_2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905258
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178756
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21