000905259 001__ 905259
000905259 005__ 20220131120324.0
000905259 037__ $$aFZJ-2022-00542
000905259 041__ $$aEnglish
000905259 1001_ $$0P:(DE-Juel1)131882$$aSilchenko, Alexander$$b0$$eCorresponding author$$ufzj
000905259 1112_ $$aINM & IBI Retreat 2021, Forschungszentrum Jülich$$cVirtual Conference$$d2021-10-05 - 2021-10-06$$wGermany
000905259 245__ $$aImpact of sample size and global confounds removals on estimates of effective connectivity
000905259 260__ $$c2021
000905259 3367_ $$033$$2EndNote$$aConference Paper
000905259 3367_ $$2BibTeX$$aINPROCEEDINGS
000905259 3367_ $$2DRIVER$$aconferenceObject
000905259 3367_ $$2ORCID$$aCONFERENCE_POSTER
000905259 3367_ $$2DataCite$$aOutput Types/Conference Poster
000905259 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1642166541_3318$$xAfter Call
000905259 520__ $$aThe interactions within brain networks are inherently directional and can be detected by using thespectral Dynamic Causal Modelling (DCM) for the resting-state functional magnetic resonance imaging (fMRI). The sample size and unavoidable presence of nuisance signals during fMRI measurementare the two important factors influencing stability of the group estimates of connectivity parameters. However, most of the recent studies exploring effective connectivity were conducted for rathersmall and minimally preprocessed datasets. Here, we explore an impact of these two factors by analyzing the cleaned resting-state fMRI data for the group of 330 unrelated subjects from the HumanConnectome Project database. We demonstrate that stability of the model selection procedure andinference of connectivity parameters are both dependent on the sample size. The minimal samplesize required for the stable Dynamic Causal modelling has to be about 50. Our results show thatglobal confounds removals have weak or moderate effect on DCM stability for the datasets properlycleaned from the artifacts.
000905259 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000905259 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000905259 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x2
000905259 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000905259 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000905259 536__ $$0G:(EU-Grant)826421$$aVirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421)$$c826421$$fH2020-SC1-DTH-2018-1$$x5
000905259 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000905259 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1$$ufzj
000905259 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b2$$ufzj
000905259 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
000905259 8564_ $$uhttps://events.hifis.net/event/161/
000905259 909CO $$ooai:juser.fz-juelich.de:905259$$pec_fundedresources$$pVDB$$popenaire
000905259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131882$$aForschungszentrum Jülich$$b0$$kFZJ
000905259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b1$$kFZJ
000905259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b2$$kFZJ
000905259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000905259 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000905259 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000905259 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
000905259 9141_ $$y2021
000905259 920__ $$lyes
000905259 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000905259 980__ $$aposter
000905259 980__ $$aVDB
000905259 980__ $$aI:(DE-Juel1)INM-7-20090406
000905259 980__ $$aUNRESTRICTED