| Home > Publications database > Impact of sample size and global confounds removals on estimates of effective connectivity > print |
| 001 | 905259 | ||
| 005 | 20220131120324.0 | ||
| 037 | _ | _ | |a FZJ-2022-00542 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Silchenko, Alexander |0 P:(DE-Juel1)131882 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a INM & IBI Retreat 2021, Forschungszentrum Jülich |c Virtual Conference |d 2021-10-05 - 2021-10-06 |w Germany |
| 245 | _ | _ | |a Impact of sample size and global confounds removals on estimates of effective connectivity |
| 260 | _ | _ | |c 2021 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1642166541_3318 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a The interactions within brain networks are inherently directional and can be detected by using thespectral Dynamic Causal Modelling (DCM) for the resting-state functional magnetic resonance imaging (fMRI). The sample size and unavoidable presence of nuisance signals during fMRI measurementare the two important factors influencing stability of the group estimates of connectivity parameters. However, most of the recent studies exploring effective connectivity were conducted for rathersmall and minimally preprocessed datasets. Here, we explore an impact of these two factors by analyzing the cleaned resting-state fMRI data for the group of 330 unrelated subjects from the HumanConnectome Project database. We demonstrate that stability of the model selection procedure andinference of connectivity parameters are both dependent on the sample size. The minimal samplesize required for the stable Dynamic Causal modelling has to be about 50. Our results show thatglobal confounds removals have weak or moderate effect on DCM stability for the datasets properlycleaned from the artifacts. |
| 536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 1 |
| 536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 2 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 4 |
| 536 | _ | _ | |a VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421) |0 G:(EU-Grant)826421 |c 826421 |f H2020-SC1-DTH-2018-1 |x 5 |
| 650 | 1 | 7 | |a Health and Life |0 V:(DE-MLZ)GC-130-2016 |2 V:(DE-HGF) |x 0 |
| 700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 1 |u fzj |
| 700 | 1 | _ | |a Popovych, Oleksandr |0 P:(DE-Juel1)131880 |b 2 |u fzj |
| 700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 3 |u fzj |
| 856 | 4 | _ | |u https://events.hifis.net/event/161/ |
| 909 | C | O | |o oai:juser.fz-juelich.de:905259 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)131882 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131684 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131880 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131678 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 2 |
| 914 | 1 | _ | |y 2021 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|