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We investigated coherent betatron oscillations of a deuteron beam in the storage ring COSY,
excited by a detuned radio-frequency Wien filter. The beam oscillations were detected by conven-
tional beam position monitors. With the currently available apparatus, we show that oscillation
amplitudes down to 1 µm can be detected. The interpretation of the response of the stored beam to
the detuned radio-frequency Wien filter is based on simulations of the beam evolution in the lattice
of the ring and realistic time-dependent 3D field maps of the Wien filter. Future measurements
of the electric dipole moment of protons will, however, require control of the relative position of
counter-propagating beams in the sub-picometer range. Since here the stored beam can be consid-
ered as a rarefied gas of uncorrelated particles, we moreover demonstrate that the amplitudes of the
zero-point (ground state) betatron oscillations of individual particles are only a factor of about 10
larger than the Heisenberg uncertainty limit. As a consequence of this, we conclude that quantum
mechanics does not preclude the control of the beam centroids to sub-picometer accuracy. The
smallest Lorentz force exerted on a single particle that we have been able to determine is 10 aN.

I. INTRODUCTION

The approach to the quantum ground state, the obser-
vation of quantum effects in macroscopic systems, and
the possibility to detect displacements of macroscopic
bodies on the nanometer scale, are the subject of in-
tense theoretical and experimental efforts [1–5]. A no-
table example is the detection of gravitational waves us-
ing an interferometric detector with mirrors in the kilo-
gram range [6]. In all-electric proton storage rings, co-
herent beam displacements down to the picometer range
that are caused by Earth’s gravity pull are in principle
accessible using the spin rotations of the proton as a de-
tector [7]. We also mention here the ongoing discussions
of the possibility to detect gravitational waves via pertur-
bations of the beam orbit in high-energy storage rings [8].
Here we report the first detection of collective oscillations
of an intense beam of deuterons in a storage ring with

an amplitude close to the quantum limit. The present
study is part of an international effort to prepare for the
search for the permanent electric dipole moment (EDM)
of charged particles. The focus of these studies has been
on systematic effects, e.g., imperfection magnetic fields
in storage rings [9], and orbit improvements in a machine
using beam-based alignment [10], thereby advancing the
high-precision frontier in spin dynamics in storage rings.
A comprehensive description of this activity and of the
proposed stepwise approach leading to a dedicated pro-
ton EDM storage ring is presented in Ref. [7].

Experiments searching for electric dipole moments of
charged particles using storage rings are at the forefront
of the incessant quest to find new physics beyond the
Standard Model of particle physics. These investiga-
tions bear the potential to shed light on the origin of
the anomalously large matter-antimatter asymmetry in
the Universe [11], for which the combined predictions of
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the Standard Models of particle physics and of cosmol-
ogy fall short of the experimentally observed asymmetry
by about seven to eight orders of magnitude [12].

The signal for an EDM is the spin precession in electric
fields, where it should be noted that the spins of charged
particles can be subjected to large electric fields only in
storage rings. The need to eliminate the overwhelmingly
stronger spin rotations driven by the magnetic moment in
magnetic fields brings to the front an all-electric, so-called
frozen spin proton storage ring [7, 13]. An important ad-
vantage of such a machine is the ability to simultaneously
store two counter-propagating proton beams. The con-
current measurement of the EDM-driven spin rotations
of the counter-propagating beams would allow to cancel
major systematic effects. To this end, to reach an ambi-
tious sensitivity to the proton EDM of dp ≈ 10−29 e cm,
it is imperative to control the relative vertical displace-
ment of the centers of gravity of the two beams to an
accuracy of about 5 pm [7]. One may wonder whether
such an enormously demanding accuracy is not prohib-
ited by the Heisenberg uncertainty principle. Towards
an ultimate precision search for EDMs of charged par-
ticles, this particular aspect of the systematics of such
measurements had not been investigated so far, and our
experiment constitutes the first step in this direction.

Here we report on the measurement of the amplitude
of collectively excited vertical oscillations of a deuteron
beam orbiting in the magnetic storage ring COSY at
a momentum of about 970 MeV/c [14]. The data were
taken in 2018 in the course of a dedicated experiment
in the framework of systematic beam and spin dynamics
studies for the deuteron EDM experiment (so-called pre-
cursor experiment), presently carried out by the JEDI
collaboration1 at COSY [15–17]. One of the central de-
vices in the precursor experiment is the radio-frequency
(RF) Wien filter (WF), shown in Fig. 1, which was de-
signed to provide a cancellation of the electric and mag-
netic forces acting on the particle. In this operation
mode, the Wien filter affects only the particle spins,
but does not perturb the beam orbit [18–20]. A slightly
detuned Wien filter, however, exerts a non-vanishing
Lorentz force on the orbiting beam particles. It is shown
collective beam oscillation excited by the WF with am-
plitudes down to 1 µm can be detected with the currently
available equipment. Our approach to measuring ultra-
small displacements complements other measurements of
ultra-small forces using different techniques [1–5].

In our experiment, the measurement cycles were much
shorter than the intrabeam interaction time, and the
beam attenuation rate was negligibly weak (see discus-
sion in [21]), therefore we treat the beam as a rarefied gas
of uncorrelated particles. Individual particles undergo
stable betatron oscillations around the equilibrium orbit
in the horizontal and vertical planes, driven by focusing

1 JEDI collaboration (Jülich Electric Dipole moment Investiga-
tions)

magnetic fields. Apart from their conventional individual
betatron motions, all the particles in a bunch participate
in one and the same collective and coherent oscillation
that is driven by the Wien filter. Therefore, the upper
bound of the amplitude of the collective oscillation of the
entire beam corresponds to the upper bound of the os-
cillation amplitude of a single particle. In our approach,
access to ultrasmall oscillation amplitudes results from
the fact that the measured signal corresponds to a col-
lective response of the electric charge of about N = 109

deuterons in the bunch.
The beam tracking simulations were carried out to pre-

dict the response of the stored beam to the detuned radio-
frequency Wien filter. The simulations use the elements
of the ring lattice and realistic time-dependent 3D field
maps of the Wien filter. These field maps describe the
spatial variation of complex electric and magnetic fields,
including the fringe field areas. Furthermore, the toler-
ances of the elements of the circuit driving the Wien filter
are also taken into consideration.

As a reference value for the Heisenberg uncertainty
relation, we take an estimate of the amplitude of the
single-particle zero-point betatron oscillation amplitude
Q. Then, our result for the smallest measured am-
plitude of the Wien filter-driven single-particle oscilla-
tion is only about a factor of ten larger than the quan-
tum limit of Heisenberg’s uncertainty relation for ver-
tical single-particle betatron oscillations. The smallest
detected oscillation amplitude is by three orders of mag-
nitude smaller than the beam size.

We demonstrate for the first time that the accuracy
with which periodic beam oscillation amplitudes can be
measured is vastly higher compared to that of static beam
displacements generated by steerers using the same BPM.
In a broad context, any new precision tool is of inter-
est per se, and the latter point has important implica-
tions, for instance, for all-electric frozen-spin EDM stor-
age rings. Here, one aims to control the interfering radial
magnetic fields by measuring the vertical spacing of the
counter-propagating beams. Our result complements the
potential of using beam oscillations to measure this dis-
tance, as discussed in Ref. [22].

One must distinguish the RF-driven collective oscil-
lations above the quantum limit Q from the quantum
uncertainty of the center of mass of the bunch circulat-
ing in a static ring. Specifically, for a rarefied-gas of N
uncorrelated particles, the quantum limit of the centroid
of the bunch, detected by the BPMs, amounts to Q/

√
N .

The paper is organized as follows. In Sec. II, the mea-
surement principle is introduced, followed by a descrip-
tion of the operation of the radio-frequency Wien filter in
Sec. III. The method to determine the beam oscillations
is discussed in Sec. IV, and the evolution of the beam to
the combined effect of the ring lattice and the Wien filter
fields are presented in Sec.V. The time-dependent field
maps of the Wien filter are discussed in Sec.VA, and the
evaluation of the uncertainties is elaborated in Sec.VB.
Experimental results are presented in Sec.VI, followed
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by conclusion and outlook in Sec.VII.

II. MEASUREMENT PRINCIPLE

The Cooler Synchrotron (COSY) [14, 23] at
Forschungszentrum Jülich is a storage ring with a
circumference of approximately 184 m. Its principal
elements used for the experiments are indicated in
Fig. 2. For the investigations presented here, the two key
devices are the RF Wien filter, based on a parallel-plates
waveguide [18], and a conventional electrostatic beam
position monitor (BPM) that is used to monitor the
beam oscillations [24]. The Wien filter generates or-
thogonal and highly-homogeneous electric and magnetic
fields. In the present experiment, the Wien filter was
operated in the mode with the electric field pointing
vertically upward (y-direction), whereas the magnetic
field points radially outward (x-direction), and the beam
moves in z-direction (see coordinate system in Fig. 2).
The effective length of the Wien filter is ` = 1.16 m (see
Refs. [18, 19] for further technical details).

As a spin rotator for the forthcoming deuteron EDM
(precursor) experiment [15–17], the Wien filter is de-
signed to operate in resonance with the spin precession
of the orbiting deuterons [18–20, 31], and at a vanishing
Lorentz force, given by

~F = q
(
~E + ~v × ~B

)
, (1)

where q denotes the elementary charge and ~v represents
the velocity of the beam particles. Unlike in conventional
DC Wien filters, the crossed electric field and magnetic
fields ( ~E and ~B) of the RF Wien filter are generated si-
multaneously by exciting the transverse electromagnetic
(TEM) mode. The spin resonance tune mapping tech-
nique, developed for the Wien filter operation in the
deuteron EDM experiment at COSY, is described in [17].

When the electric and magnetic fields in the Wien fil-
ter are mismatched, i.e., when the electric and magnetic
forces no longer cancel each other, the RF fields excite
collective beam oscillations at the frequency at which the
Wien filter is operated. In the present experimental set
up, a mismatch between electric and magnetic fields pro-
vides a vertically mismatched Lorentz force (see coordi-
nate system in Fig. 2).

With a vanishing Lorentz force, the beam performs idle
vertical (and horizontal) betatron oscillations

y(t) = y(0)

√
βy(t)

βy(0)
cos [ψy(t)] , (2)

where βy(t) is the betatron amplitude function. With
the beam revolution period of T = 2π/ωrev, the betatron
phase advance ψy(t) satisfies ψy(t+ T )−ψy(t) = ωyT =
2πνy, where νy is the vertical betatron tune given by
νy = ωy/ωrev.

On the other hand, a mismatched Wien filter ex-
erts stroboscopically, i.e., once per turn, a vertical force
Fy(n) = Fy cos(nωWFT ) on the stored particle, where n
is the turn number and ωWF denotes the angular velocity
of the RF in the Wien filter (see discussion of Fig. 12 in
Sec.VI). The change of the vertical velocity of the stored
particle, accumulated during the time interval ∆t = `/vz
the particle spends per turn n inside the Wien filter, is
given by

∆vy(nT ) =
Fy(n)∆t

γm
= −ζωy cos(nωWFT ) , (3)

where γ and m are the Lorentz-factor and the mass of
the particle, respectively. The change ∆y of the verti-
cal position y in the Wien filter can be neglected. The
coupling of vertical and radial beam oscillations is negli-
gible (see Sec. IV) and it is sufficient here to treat driven
oscillations in a one-dimensional approximation. Due to
the very strong disparity of synchrotron and fractional
WF frequencies, synchro-betatron coupling can be ne-
glected (see discussion in [32]). Furthermore, beam at-
tenuation either by intrabeam scattering or by interac-
tion with residual gas during the data acquisition cycle
is very small (see AppendixB), justifying the rarefied gas
approximation.

According to Eq. (2), the stroboscopic signal of the be-
tatron motion observed at any point in the ring, follows
the harmonic law with angular velocity ωy, and we invoke
the familiar description of the oscillatory motion in terms
of the complex variable z = y − ivy/ωy. With the initial
condition z(0) = 0, summing ∆vy(kT ) after n turns, the
solution for z(n) behind the Wien filter reads

z(n) =
iζ

2
·
[

exp(inωyT )− exp(in ωWFT )

exp(i(ωy − ωWF)T )− 1

+
exp(inωyT )− exp(−in ωWFT )

exp(i(ωy + ωWF)T )− 1

]
.

(4)

This expression serves as the initial condition for the idle
betatron motion during the subsequent (n+ 1) turn and
so forth. A similar analytic result holds also for generic
AC dipole-driven betatron oscillations, discussed in a
very different context of machine diagnostics in Ref. [33]
(see also references therein).

Driven by the mismatched Wien filter, all beam par-
ticles participate in one and the same collective and co-
herent oscillation, and according to Eq. (4), the beam as
a whole exhibits oscillations at the Wien filter frequency
ωWF. A lock-in amplifier may be used to selectively mea-
sure the corresponding Fourier component of the beam
oscillation y = ξy cos(nωWFT ) from the output of a beam
position monitor. Its amplitude is given by

ξy =
ζ

2
· sin(2πνy)

cos(2πνWF)− cos(2πνy)
, (5)

where the vertical betatron tune νy, and the Wien fil-
ter tune νWF, are given by νy = ωy/ωrev and νWF =
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(a) CAD drawing of the design of the RF Wien filter. 1: RF feed, 2:
beam pipe, 3: inner mounting cylinder, 4: inner support structure, 5:
lower electrode, 6: insulator, 7: RF connector, and 8: vacuum vessel.

(b) Photograph with a view along the beam axis showing the
gold-plated copper electrodes, which have a length of

808.8 mm.

FIG. 1. The waveguide RF Wien filter is mounted inside a cylindrical vessel. The effective length of the device amounts to
` = 1.16 m.The technical details are described in Refs. [18, 19].

ωWF/ωrev, respectively. When the Wien filter tune is
close to the vertical betatron tune, a resonant enhance-
ment of the beam oscillation amplitude ξy occurs. Equa-
tion (5) describes Hooke’s law, Fy = kHξy, and Hooke’s
constant is given by

kH =

∣∣∣∣2γmωy∆t
· cos(2πνWF)− cos(2πνy)

sin(2πνy)

∣∣∣∣ . (6)

We invoke an approximate description of the betatron
motion by a harmonic oscillator with constant betatron
function and evaluate the Heisenberg uncertainty limit Q
for the betatron oscillation amplitude ξy in terms of the
zero-point oscillator energy 1

2~ωy, which yields

Q2 =
~

mγωy
. (7)

For the present experiment, we obtain

Q =
82
√
γνy

nm . (8)

With the actual COSY values for the betatron tune νy
and the Lorentz-factor γ of the beam (see Table I, Ap-
pendixA), the quantum limit of the vertical betatron os-
cillations amounts to

Q ≈ 41 nm . (9)

The interpretation of the measured oscillation ampli-
tudes in terms of the Wien filter parameters requires nu-
merical simulations of the performance of the Wien filter

as an element of the storage ring [18]. The details rele-
vant to the present study are described below; the cor-
responding beam simulations carried out are consistent
with the available experimental results on the properties
of COSY [21].

III. WIEN FILTER OPERATION

The control of the Lorentz force of the waveguide RF
Wien filter is based on the wave-mismatch principle [20].
An impedance mismatch is introduced at the load part of
the device to deliberately create reflections that generate
a standing wave pattern inside the Wien filter [31]. These
standing waves can be represented by the complex-valued
field quotient Zq, defined as the ratio of the total electric
to the total magnetic field strength,

Zq =
Etotal

Htotal =
E+ + E−

H+ −H− =
E+ + Γ · E+

H+ − Γ ·H+

= Zw
1 + Γ

1− Γ
= Z0

d

W

1 + Γ

1− Γ
,

(10)

where the superscripts ’+’ and ’−’ refer to the forward
and backward direction of propagation, Zw is the wave
impedance, Z0 ≈ 377 Ω is the vacuum wave impedance,
d = 100 mm is the distance between the electrodes,
W = 182 mm is their width [18], and Γ is the reflection
coefficient that controls the amplitude and phase of the
reflected wave. During the measurements described here,
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FIG. 2. Schematic diagram of the cooler synchrotron and storage ring (COSY) with the main components, especially the
focusing/defocusing magnets (quadrupoles) and the bending magnets (dipoles). Indicated are the position of the RF Wien
filter and the location of the beam position monitor [25] (BPM17), used to observe the beam oscillations. Further components
such as the 2 MeV electron cooler [26], the WASA [27] and the JEPO [28, 29] polarimeters, and the Siberian snake [30] are also
shown. The coordinate system used is indicated.

the Wien filter was typically operated at a net input RF
power of 600 W.

The field quotient Zq is controlled via a specially de-
signed RF circuit [31]. By altering Γ via two variable
vacuum capacitors, called CL and CT, a wide range of
Zq values can be covered, and the matching point corre-
sponding to the minimum induced vertical beam oscilla-
tion amplitude may be determined.

IV. BEAM OSCILLATIONS

In this experiment, the electric field of the Wien filter
is oriented vertically and the magnetic field horizontally.
This implies that the oscillations mainly take place along
the y-axis [see Eq. (1)]. For the detection of the vertical
beam oscillations, a conventional beam position moni-
tor has been employed. In order to be most sensitive,
BPM17 located in the straight section opposite to the
Wien filter (see Fig. 2) with a large vertical β function
was used, βBPM

y ≈ 15.3049 m, while at the Wien filter
location, βWF

y ≈ 2.6784 m, as shown in Fig. 3. The ar-
guments to pick BPM17 are further discussed below in

Sec.V.

0 50 100 150
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10
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FIG. 3. Vertical and horizontal beta-functions along the cir-
cumference of COSY [21]. The vertical dashed lines mark the
location of the Wien filter and of the beam position monitor
used during the measurement of the beam oscillations.

In order to measure small beam oscillations, a tech-
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FIG. 4. Readout scheme of the COSY BPM17. The signals of
the four electrodes are fed into lock-in amplifiers. The differ-
ential signal of each electrode is analyzed at the two reference
frequencies given by the COSY RF and the Wien filter fre-
quency. The resulting Fourier amplitudes of the signals are
recorded in the EPICSa archiving system of COSY.
a Experimental Physics and Industrial Control System,
https://epics.anl.gov/index.php.

nique based on lock-in amplifiers2 was developed [34].
These devices operate in the frequency domain and lock
onto a signal whose frequency is set as a reference, which
is particularly useful in an electromagnetically noisy envi-
ronment. Each measurement consisted of two subsequent
machine cycles of 3 min duration, as depicted in Fig. 14
in AppendixB.

A stored beam bunch circulating at a revolution fre-
quency of frev that passes through a beam position mon-
itor induces a voltage signal on all its four electrodes,
as indicated in the readout scheme of the BPM, shown
in Fig. 4. For the detection of vertical beam oscillations,
only the voltage signals Ut, b from the top (t) and bottom
(b) electrodes are considered. These signals are trains of
short pulses with the repetition frequency frev. In view

of Eq. (2) and as far as the Fourier spectrum of the beam
oscillations is concerned, without loss of generality, the
BPM can be considered to be located right behind the
Wien filter, and the induced voltages can be represented
by

Ut, b = [U0 ±∆U (∆y)] cos(ωrevt) , (11)

where the index ’t’ refers to the + sign and the index
’b’ to the − sign, respectively. The harmonic factor
cos(ωrevt) emphasizes the pulse repetition frequency, al-
though cos(ωrevt) = 1 for t = nT . The voltage Ut, b
is non-zero only at the time the beam passes through
the BPM. Here, U0 denotes the voltage proportional to
the beam current that is induced when the beam passes
exactly through the center of the BPM, and ∆U (∆y)
represents the voltage variation induced by a beam that
is vertically displaced by ∆y.

For small beam displacements, the beam position mon-
itor operates in its linear regime, which implies that the
induced voltages take the form

∆U (∆y) = κ ·∆y · U0 , (12)

where κ is a calibration factor that needs to be deter-
mined. At a momentum of 970 MeV/c, the revolution fre-
quency of deuterons orbiting in COSY is frev ≈ 750 kHz.
The Wien filter is operated at the kth sideband of the
spin-precession frequency fs, given by

fWF =
ωWF

2π
= (k + νs)frev = k · frev + fs . (13)

Here νs = Gγ denotes the spin tune, i.e., the number
of spin precessions per revolution, G ≈ −0.1430 is the
magnetic anomaly of the deuteron, and the spin preces-
sion frequency fs = νsfrev [18]. It should be noted that
in view of ωrevT = 2π, trains of beam oscillation pulses
do not depend on the actual choice of the sideband. In
the present experiment the Wien filter was operated at
k = −1, which corresponds to fWF ≈ 871 kHz 3.

The induced oscillations of amplitude ξy contribute to
Eq. (11) the harmonic voltage variation ∆U (y(t)). The
BPM in conjunction with the lock-in amplifiers is used
to measure at times t = nT the beam positions at the
reference frequencies, i.e., at fWF and at frev. Given that
y(t) can be evaluated at the spin precession frequency,
the BPM signals of the upper and lower electrodes can
be written as follows

Ut, b(t) = [U0 ±∆U (∆y)±∆U (y(t))] cos (ωrevt) = [U0 ±∆U (∆y)± κξyU0 cos (ωst)] cos (ωrevt)

= [U0 ± κ∆yU0] cos (ωrevt)±
1

2
κξyU0 cos (ω∆t)±

1

2
κξyU0 cos (ωΣt) .

(14)

2 HF2LI 50 MHz Lock-in Amplifier, Zurich Instruments AG,
8005 Zurich, Switzerland, https://www.zhinst.com/others/

products/hf2li-lock-amplifier.
3 For the considerations presented in this paper, negative and pos-
itive frequencies are considered equivalent.

https://epics.anl.gov/index.php
https://www.zhinst.com/others/products/hf2li-lock-amplifier
https://www.zhinst.com/others/products/hf2li-lock-amplifier
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Here ω∆ and ωΣ represent sidebands of the Wien filter
frequency at

ω∆ = ωrev − ωs = ωWF|k=1 , and
ωΣ = ωrev + ωs = ωWF|k=−1 .

(15)

In order to measure the beam oscillations, four lock-
in amplifiers [34] were used, two for the horizontal and
two for the vertical direction. For each direction, one
lock-in amplifier detects the Fourier amplitudes at frev ≈
750 kHz and a second one at fΣ = frev + fs ≈ 871 kHz.
The lock-in amplifiers receive reference frequencies from
the signal generator of the Wien filter and from the mas-
ter oscillator of COSY. The four Fourier amplitudes of
the top and bottom electrodes are determined practically
in real-time, yielding

Arev
t, b = U0 ± κ∆yU0 , and

AΣ
t, b = ∓1

2
κξyU0 .

(16)

The amplitude of the vertical oscillation ξy can then be
determined from

AΣ
t −AΣ

b
Arev

t +Arev
b

= ξ̂y = κ
U0

2U0
ξy =

1

2
κξy . (17)

The uncalibrated raw asymmetry of the four Fourier am-
plitudes is denoted by ξ̂y.

The readout scheme, shown in Fig. 4, was used to con-
currently record radial beam oscillations, and the above
analysis has been repeated for the corresponding ξ̂x. The
main result is that the coupling of vertical and radial be-
tatron oscillations is negligibly weak, |ξ̂x/ξ̂y| < 2× 10−2,
which justifies treating the RF-driven beam oscillations
as one-dimensional.

The determination of the calibration constant κ, re-
quired to calibrate the vertical oscillation amplitude, is
described in detail in AppendixB. It amounts to

κ = (5.82± 0.43) · 10−6 µm−1 . (18)

During the experiments, the vertical betatron tune of
the machine amounted to about νy ≈ 3.6040.4 The fre-
quency fΣ ≈ 871 kHz, at which the Wien filter is oper-
ated, is well separated from the lowest intrinsic spin res-
onances5 at 297 kHz, 453 kHz, 1048 kHz, and 1204 kHz.

The two variable and highly accurate capacitors, CL
and CT, are driven by stepper motors. They constitute

4 The numerical values used for the simulation calculations are
listed in Table I of AppendixA.

5 An intrinsic depolarizing resonance is encountered, when the be-
tatron motion of the particles is in sync with the spin motion,
hence, when the condition fs = νsfrev = fy = (nP ± ν′y)frev
is fulfilled [35], where n ∈ N, P denotes the superperiodicity of
the lattice, and ν′y the fractional tune. During the experiments
described here, P = 1 (see also Fig. 3).

the main dynamical elements of the driving circuit. Each
pair of capacitor values yields a well-defined field quo-
tient |Zq|, as shown in Fig. 5 (a). Away from the match-
ing point, a phase shift ∠Zq occurs between electric and
magnetic fields, as shown in Fig. 5 (b). The correspond-
ing Lorentz force leads to the measured beam oscilla-
tions, i.e., the function ξy = f (CL, CT), which can be
visualized in the form of a 2D map, as shown in Fig. 6.
The experimental data were taken on a grid of (7 × 6)
points of CL and CT, with corresponding grid spacings of
(94.5± 1.0) pF for CL and (95.8± 1.0) pF for CT. Each
grid spacing corresponds to 1000 steps of the correspond-
ing stepper motors. The calibration of the capacitances
CL and CT as a function of step number is discussed in de-
tail in [31]. The grid spans over CL ∈ [318.88, 885.58] pF
and CT ∈ [428.99, 907.79] pF. The uncertainties of the
grid spacings are systematic ones.6

The map of the measured and calibrated vertical beam
oscillations ξy is shown in Fig. 6. The parameters of the
matching point are given by

CL = (697.1± 1.0) pF , and
CT = (503.0± 1.0) pF ,

(19)

and the corresponding minimal detected beam oscillation
amplitude at the location of BPM17 amounts to

ξmin
y

∣∣
BPM = (1.08± 0.52) µm . (20)

The above accuracy of δξmin
y

∣∣
BPM = 0.52 µm can be

compared to the accuracy of measurements of static dis-
tortions of the beam orbit, which is about 20 µm (see Ta-
ble II). As expected, the accuracy of the beam oscillation
amplitudes is better by a factor of about 40 compared to
the static amplitudes measured using the same BPM.

Upon rescaling the oscillation amplitudes using Eq. (2)
with β functions listed in Table I to the WF location, we
obtain

ξmin
y

∣∣
WF

= (0.45± 0.22) µm , (21)

which should be compared to the value of Q ≈ 41 nm,
given in Eq. (9). The largest measured amplitude of
driven beam oscillations at a strongly mismatched point
with 600 W of input RF power amounts to

ξmax
y

∣∣
BPM = (66.2± 3.1) µm . (22)

Here one must bear in mind that the sensitivity to a pe-
riodic signal scales inversely with the square root of the
observation time.7 The frozen-spin proton EDM experi-
ment aims at the accumulation of the EDM signal for a

6 The individually measured uncertainties of the capacitors are ac-
tually much smaller than the stated uncertainty of 1.0 pF. How-
ever, other factors, such as the capacitances and inductances of
the connectors and cables and their power dependencies, also
contribute to the aforementioned uncertainties.

7 The relevant discussion is found in Ref. [36]. See also the ob-
servation of white noise suppression by two orders in magnitude
when using 5 h signal averaging in a test bench experiment with
SQUID BPMs [22].
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(a) Magnitude of the field quotient |Zq |, evaluated integrally,
where |Zq |int =

∫
|Zq |d`. Ideally, with |Zq | close to 176 Ω, the

electric and magnetic forces are equal.

(b) Phase of the field quotient ∠Zq evaluated integrally, where
∠Zint

q =
∫
∠Zqd`. A non-vanishing ∠Zq implies a phase shift
between the electric and magnetic fields.

FIG. 5. Simulated integral magnitude (a) and phase of the field quotient Zq (b) at each point of the CL and CT grid, indicated
by the blue points, ` denotes the effective length of the Wien filter. Besides the matching point [see Eq. (19)], (7× 6) grid
points were investigated.

duration of about 107 s [7]. The accuracy δξmin
y

∣∣
BPM =

0.52 µm [Eq. (20)] corresponds to an averaging time of
96 s [see Fig. (14) in Appendix (B)]. With the currently
used BPMs and their readout electronics, together with
an extension of the averaging time to 107 s, there would
be a factor of 320 improvement in sensitivity to coherent
beam oscillations, leading to an accuracy of 1.6 nm.

In Fig. 7 (a), the data measured at the matching point
[Eq. (19)] are shown. Each sample was recorded by the
lock-in amplifiers with an integration time set to 0.5 s,
corresponding to an average of 5000 measurements. A
Monte Carlo error propagation model was applied to
treat the uncertainties of the still uncalibrated raw posi-
tion asymmetries ξ̂y and the calibration coefficient κ [37].
The results are fitted with a normal distribution, as
shown in Fig. 7 (b), from which the mean value µξy and
the error of the measured beam oscillations σξy are esti-
mated. The latter represents the systematic error of the
measurement. It should be noted that the map shown in
Fig. 6 is actually a function of all the circuit elements.
The uncertainties of ξy are influenced by the uncertain-
ties of all circuit elements and also by the ones of the
BPM itself, which include its readout electronics, i.e.,
the lock-in amplifiers.

To appreciate the result given in Eq. (20), one can com-
pare the oscillation amplitude to the 1σ vertical beam
size. The latter has been deduced from the 1σ beam
emittance εy and the amplitude of the β function at the
position of the BPM, yielding

σBPM
y =

√
βBPM
y εy ≈ 1.4 mm . (23)

In the present experiment, the beam emittance was not
monitored. The above numerical estimate of σBPM

y is
based on rescaling the experimental result for the 2σ

FIG. 6. Measured amplitudes of beam oscillations ξexp
y at

BMP17, plotted on a grid as a function of the variable capac-
itor values CL and CT. To avoid crowding up the map, the
error bars of the data points were omitted, these are shown
in Fig. 13 instead. The parameters of the matching point are
given in Eq. (19).

beam emittance of 49.3 MeV protons in COSY of εy =
(0.92± 0.15) µm [21] to the conditions of the present ex-
periment. It is noteworthy that with the present equip-
ment it is possible to access coherent beam oscillations
with amplitudes that are more than three orders of mag-
nitude smaller than the beam size.

V. BEAM DYNAMICS SIMULATIONS

To improve our understanding of the measured results,
a computer code was developed to model the beam dy-
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(a) Measured oscillation amplitudes ξy using data samples of
0.5 s duration, each sample reflects the average of 5000

measurements of the lock-in amplifiers.

(b) Probability density distribution fξy of the measured data,
fitted with a Gaussian to determine mean and standard deviation.

FIG. 7. Measured beam oscillations at the matching point [Eq. (19)] of the map shown in Fig. 6. The samples shown in panel
(a) were acquired during a data taking period of 108 min, using 36 machine fills (cycles).

namics in the COSY storage ring. The modeled storage
ring consists of a sequence of drift regions, quadrupole
and dipole magnets, the Wien filter, and beam position
monitors. These elements are represented by transfer
matrices, which are well understood and documented in
the literature [38]. In the model of the ring, the actual
settings of the beam optics elements of COSY were those
used at the time when the experiment took place. Simu-
lations are based on the Hamiltonian formulation as pre-
sented in Ref. [38]. The Wien filter is modeled by a time-
dependent matrix that also takes into account the arrival
time of the particles.

A. Time-dependent Wien filter field maps

In order to be able to perform reliable beam simu-
lations, we have placed great emphasis on good spatial
resolution and the accuracy of the 3D field maps inside
the Wien filter8, computed using a 3D electromagnetic
simulation tool9. The fringe fields of the Wien filter are
included, because they are of particular importance for
the beam oscillations, as will be discussed later. An ex-
ample of the computed 3D fields of the Wien filter at the
experimentally determined matching point is shown in

8 Each field map consists of 2× 106points, 200 points along
the x axis (x ∈ [−5 mm, 5 mm]), 200 points along the y axis
(y ∈ [−5 mm, 5 mm]), and 50 points along the z (Wien filter) axis
(z ∈ [−`/2,+`/2]), where ` = 1.16 m is the effective length of the
Wien filter.

9 Electromagnetic and circuit simulations were performed us-
ing CST, from Dassault Systèmes, Vélizy-Villacoublay, France,
https://www.3ds.com.

Fig. 8. The beam-tracking simulations use the three vec-
tor components of the electric and magnetic fields. The
Wien filter is implemented as an RF kicker, as described
by Eq. (3).

Inside COSY there are 32 BPMs available to control
the horizontal and vertical beam position during opera-
tion. In order to select one of them with a good sensi-
tivity to determine the beam oscillations induced by the
Wien filter, a number of particles were tracked, as de-
scribed above, and the orbit response induced by a field
change at the location of the Wien filter was calculated
at each BPM location10. As a result, BPM17, located
about 70 m downstream of the Wien filter (see Fig. 2),
was chosen because it offered good sensitivity to both
radial and vertical beam oscillations.

Figure 8 shows the main field components Ey and Bx.
When mismatched, the Wien filter generates periodic
transverse perturbations of the trajectory. Switching off
the Wien filter eliminates such oscillations. The maxi-
mum amplitude of the observed oscillations in the sim-
ulation is then taken for ξy. The two simulated vertical
beam oscillation amplitudes of BPM17 and Wien filter
read

ξBPM
y = (1.086± 0.082) µm , and

ξWF
y = (0.435± 0.031) µm ,

(24)

which agree well with the experimentally measured re-
sults, given in Eqs. (20) and (21). A detailed description

10 In the preparatory stage, simulations were carried out using the
Software Toolkit for Charged-Particle and X-Ray Simulations
BMAD [39].

https://www.3ds.com
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(a) 3D electric field distribution of the component Ey . (b) 3D magnetic field distribution of the flux density component
Bx.

FIG. 8. Examples of the main electric and magnetic field components inside the waveguide RF Wien filter at the matching
point [see Eq. (19)] with an input RF power of 600 W. The electric field component in (a) points vertically upward (y-direction),
while the component of the magnetic flux density in (b) points radially outward (x-direction).

FIG. 9. Simulated amplitudes of beam oscillations ξsimy as a
function of the variable capacitor values CL and CT. To avoid
overcrowding the map, the error bars of the data points were
omitted here and are shown in Fig. 13.

of the determination of the uncertainties of the beam
simulations is discussed in the next section.

For each and every measured point on the CL versus
CT grid, a beam dynamics simulation was carried out.
For each of these points, a 3D field map of the Wien
filter was generated and then used for the beam tracking
simulations. The results of these simulations are shown
in Fig. 9, and are later compared with the results of the
measurements.

B. Uncertainty evaluation

The accuracy with which the Lorentz force and the re-
sulting amplitudes of the beam oscillations can be tuned
depends on the accuracy with which the field quotient Zq
can be integrally set to the desired value. Zq depends on
the hardware elements in the driving circuit. In order to
evaluate the effects of uncertainties of these elements, ex-
tensive coupled circuit electromagnetic simulations have
been conducted, as discussed in Ref. [31]. The uncertain-
ties involved are listed in Table 6 and shown in Fig. 16 of
Ref. [31]. As far as the Lorentz force is concerned, most
important are the uncertainties of the fixed inductance Lf
and the fixed resistance Rf. Once these uncertainties are
known, one can compute the electric and magnetic fields
and the corresponding Lorentz force, including their cor-
responding errors. Figure 10 shows a few examples of
the main components of the electric and magnetic fields,
computed with the above mentioned circuit uncertain-
ties. As will be explained below, these 3D fields, together
with their uncertainties, are subsequently used as input
to the beam simulations.

The algorithm used to compute the uncertainties of
the beam simulations is the polynomial chaos expansion
(PCE), as explained in Refs. [19, 31] and in AppendixC.
The PCE has been proven in many applications in sci-
ence and engineering to be just as accurate as the com-
putationally much more expensive Monte-Carlo counter-
part [19, 40–42].

To compute the uncertainties σξy , the PCE algorithm
requires a random set of the simulated ξy, alongside a set
of randomized input parameters according to their uncer-
tainties to generate the output. The set of ξy is produced
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(a) Electric field component Ey(z) under circuit uncertainties. (b) Magnetic field component Bx(z) under circuit uncertainties.

FIG. 10. 200 examples of the electric and magnetic fields as a function of z along the beam axis under the circuit uncertainties,
specified in the list of uncertainties in Table 6 of [31].

using a number of beam-tracking simulations, where for
each instance, a 3D field map of the Wien filter is gener-
ated, according to the randomized input parameters. An
example of the electric and magnetic fields evaluated at
the center of the Wien filter for the matching case [see
Eq. (19)] is shown in Fig. 10. The magnitudes of the fields
vary as a function of the uncertainties of the driving cir-
cuit [31]. The numerical tracking of the particles through
these fields generates a collection of different ξy values
that the PCE algorithm can use to project the output
onto orthogonal polynomial functions. These functions
serve as basis functions, from which the expansion coef-
ficients are determined that are used to generate a large
sample of outputs to compute the uncertainties of the
beam simulations.

In Fig. 11 (a), the simulated values of ξy are shown for
the matching case. The detailed steps to achieve this re-
sult are discussed in AppendixC. As shown in Fig. 11(b),
fitting these data to a Gaussian yields a standard devi-
ation of σξy = 0.082 µm. This number is of considerable
importance, because, given the uncertainties of the driv-
ing circuit, it sets the lower limit that can be achieved
by minimizing the amplitude of the vertical beam oscilla-
tions when more sharply tuning the driving circuit of the
Wien filter. The same procedure is performed on each
point of the map shown in Fig. 9.

VI. COMPARISON OF SIMULATION AND
EXPERIMENTAL RESULTS

The simulations yield the net Lorentz force exerted by
the Wien filter on beam particles and the correspond-
ing oscillation amplitudes for each measured point of the
CL versus CT map, shown in Fig. 6. The only variables

in this case are the field maps of the Wien filter itself.
After 1000 turns, the beam position is computed at the
same location in the ring, where the measurement using
BPM17 took place (see Fig. 2). The net Lorentz force
is a result of local cancellations between the electric and
magnetic field components, as illustrated in Fig. 12 for
the matching point given in Eq. (19) with the minimal
measured oscillation amplitude.

In Fig. 12(a), the local Lorentz force is shown along
the trajectory for 5 randomly chosen passes though the
Wien filter. The trajectory of the same particle changes
from pass to pass, thereby different Wien filter fields and
consequently different values of the Lorentz force Fy will
be picked up. As shown in Fig. 12, even at the match-
ing point, the matching is still imperfect, and the largest
local Fy contributions are caused by the fringe fields at
the entrance and exit of the Wien filter. Despite the
different location of the particle in the vertical and hor-
izontal phase space at the entrance of the Wien filter
upon subsequent passes, the integration of these local
forces along the particle trajectories exhibits nevertheless
a perfectly harmonic time dependence with the frequency
fs, as shown in Fig. 12(b). The points encircled in blue
correspond to the randomly selected passes through the
Wien filter, shown in Fig. 12(a).

In the left panel of Fig. 13, the amplitude of the simu-
lated Lorentz force F sim

y is plotted versus the simulated
oscillation amplitude ξsimy at the Wien filter position. As
expected, it exactly follows Hooke’s law with a spring
constant of kH = (151.2±0.2) MeV/m2. In Fig. 13(b), the
measured amplitudes are compared with the ones simu-
lated for the location of BPM 17. The two sets ξexp

y and
ξsimy are in very good agreement with each other. The
horizontal and vertical error bars are derived from the
uncertainties of the measurements and simulations, rep-
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(a) Simulated oscillation amplitudes under uncertainties at the
matching point (Eq. (19)). Of the 106 simulations that were carried

out, only 104 are shown here.

(b) Probability density distribution fξy of the 106 simulations
from panel (a), fitted by a Gaussian to determine mean and

standard deviation.

FIG. 11. Results of the sparce PCE algorithm to compute the uncertainties of the simulated vertical beam oscillations at
BPM17.
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(a) Local Lorentz force Fy(z) exerted on a single deuteron for
different passes though the Wien filter. The turn numbers used
here were randomly selected between 1 to 100. The fields were

evaluated at the crosses and the interconnecting lines are to guide
the eye.
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(b) Integral Lorentz force Fy(n) evaluated along the trajectory.
Each point represents an overall kick exerted per turn n. The

points marked in blue correspond to the integrated local Lorentz
force of the individual turns shown in panel (a).

FIG. 12. Simulation of the local and integrated Lorentz force in the Wien filter at the matching point of Eq. (19). Depending on
the initial coordinates in the vertical and horizontal phase space, the particle travels along different trajectories, and therefore
picks up different field components Fy.

resented by the width of the distributions, as shown in
Figs. 7(b) and 11(b). It is important to note that the er-
ror bars refer to systematic uncertainties and should not
be confused with statistical ones. This implies that repe-
titions of either the measurements or the simulations will
neither reduce the systematic error of the readout elec-
tronics of BPM17, nor will it affect the uncertainties of
the elements of the driving circuit.

The fit shown in Fig. 13 yields χ2/ndf = 45.5/41, very
close to unity [43]. The linear fit yields a slope of 0.999±
0.018, which is perfectly consistent with unity. The in-
tercept parameter of the fit yields (−0.93±0.31) µm, and

within three standard deviations, it agrees with zero.
The very good agreement between measurements and

simulations reflects our good understanding of both the
electromagnetic fields generated in the Wien filter and
of the underlying beam dynamics in the machine. This
point is further substantiated by comparing the simu-
lated amplitudes at the Wien filter and at the positions of
the BPMs with the estimated amplitudes expected from
rescaling based on the β functions11, taking into account

11 The uncertainty of the β functions amounts to about 10%, as
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(a) Simulated Lorentz force F sim
y at the Wien filter location

as function of the oscillation amplitude ξsimy , fitted with the
function F sim

y = a · ξsimy + b.

(b) Simulated beam oscillation amplitude ξsimy versus the
measured oscillation amplitude ξexp

y at the BPM, fitted with
the function ξsimy = c · ξexp

y + d.

FIG. 13. (a): Simulated amplitude of the Lorentz force at the Wien filter location as function of the simulated beam oscillation
amplitudes ξsimy . (b): Simulated versus measured vertical beam oscillation amplitudes at the location of BPM17. The horizontal
error bars of the measured amplitudes ξexp

y originate from the readout electronics of BPM17 and the calibration factor κ (see
AppendixB), whereas the vertical ones are determined by the circuit uncertainties using the PCE method, as described in
AppendixC.

the numerical values, listed in Table I of AppendixA,

ξWF
y

∣∣
sim = (0.435± 0.031) µm ,√

βWF
y

βBPM
y

ξBPM
y |sim = ξWF

y

∣∣
est = (0.435± 0.039) µm .

(25)

The good agreement between these two numerical values
in Eq. (25) indicates that the observation of the oscilla-
tion amplitude at one location in the ring can be reli-
ably transferred to some other place in the ring by use of
Eq. (2). The above quoted value of ξWF

y

∣∣
sim = 0.435 µm

is about a factor of 10 larger than the quantum limit of
the vertical oscillation amplitude Q, given in Eq. (9).

In searches for EDMs in dedicated all-electric stor-
age rings, a continuous monitoring of the orbits of the
two counter-rotating beams is mandatory during data
acquisition within the horizontal spin-coherence time [7].
When intrabeam scattering can be neglected [21], which
is arguably justified within the horizontal spin-coherence
time, the beam can be described as a rarefied gas of par-
ticles, i.e., the zero-point oscillations of individual par-
ticles are uncorrelated. We repeat the point from the

discussed in Ref. [21].

introduction that in a static regime, the quantum limit
of the center of mass of a bunch with N particles can be
estimated via Qbunch = Q/

√
N . For a bunch of N = 1010

stored particles, one obtains Qbunch ' 0.4 pm. It follows
that Heisenberg’s uncertainty relation does not present
an obstacle to achieving a sensitivity of 5 pm for the ver-
tical separation of clockwise and counter-clockwise beams
– the real challenge is to develop compact BPMs with a
sensitivity improved by a factor of about 300 compared
to those used here [25].

Finally, a satisfactory agreement has been achieved
between Hooke’s constant, simulated using the electro-
magnetic fields in the Wien filter and the β functions
of the COSY lattice, and the theoretical approximation
of the no-lattice model assuming constant β functions of
Eq. (6), yielding

ksim
H = (151.2± 0.2) MeV m−2 , and

kth
H = 207 MeV m−2 .

(26)

The theoretical estimate of kth
H , calculated using the nu-

merical values listed in Table I of AppendixA, is about
a factor of 1.4 larger than the simulated one. The given
uncertainty of ksim

H does not include the systematic scale
uncertainty of the BPM calibration factor κ [see Eq. (B2)
in AppendixA]. At the matching point [see Eq. (19)], the
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Lorentz force amounts to

FWF
y = ksim

H · ξWF
y

∣∣
sim ≈ 66 eV m−1 = 10.6 aN , (27)

where the intercept parameter has been ignored because
of its smallness.

VII. CONCLUSION AND OUTLOOK

As part of several studies to investigate the perfor-
mance of the waveguide RF Wien filter, exploratory
data were taken to provide a benchmark on the sensi-
tivity to very weak collective vertical beam oscillations
of deuterons stored in the COSY ring. To a good ap-
proximation, the beam can be viewed as a rarefied gas
of uncorrelated particles, and the sensitivity limit is ap-
plicable to the classical motion of individual particles,
propagating along the ring circumference in the confin-
ing oscillatory potential. Simulations of the beam dy-
namics in the COSY ring equipped with an RF Wien
filter suggest that with the present apparatus, the sen-
sitivity to collective beam oscillations on the sub-micron
level is only a factor of about 10 larger than the am-
plitude of single-particle zero-point quantum oscillations
of the stored deuterons. From the perspective of future
EDM experiments, our finding confirms that, as far as
the Heisenberg uncertainty relation is concerned, a sepa-
ration of the centroids of two counter-propagating beams
may be determined to sub-picometer accuracy.

The reported excellent agreement between simulated
and experimentally observed vertical beam oscillations
at COSY suggests that a further increase in sensitiv-
ity to collective beam oscillations is possible. Specifi-
cally, the simulation on finer capacitor grids indicates
that by further optimization of the Wien filter settings
to CL = (692.76± 1.00) pF and CT = (495.77± 1.00) pF,
an oscillation amplitude at the Wien filter location of
ξy = (0.077± 0.032) µm may be achieved. Thus in that
case, the vertical oscillation amplitude would only be
about a factor of 2 away from the quantum limit, with a
corresponding Lorentz force of Fy ∼ 3 aN.
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TABLE I. Numerical values used for the beam simulations.
The genuinely independent input parameters are listed in bold
face. The derived quantities are displayed in normal font and
are truncated to four decimal places.

Quantity Symbol Value
deuteron beam momentum p 970.0000 MeV/c

deuteron mass m 1875.6128 MeV/c2

deuteron G factor G −0.1430

Lorentz factor β 0.4594

Lorentz factor γ 1.1258

COSY circumference LCOSY 183.4728 m

revolution frequency frev 750 603.7600 Hz

vertical machine tune νy 3.6040

vertical β function at BPM17 βBPM
y 15.3049 m

vertical β function at WF βWF
y 2.6784 m

effective length WF ` 1.1600 m

frequency WF fWF 871 000.0000 Hz

tune WF νWF 1.1604

Appendix A: Quantities used in beam simulations

In order to provide a consistent calculation of all ef-
fects in the storage ring, the beam simulations were car-
ried out using the set of quantities given in Table I as
an input. The vertical machine tune νy is a result of
simulations with the known COSY lattice, reflecting the
actual currents of the magnetic elements in the machine
at the time when the experiment was conducted. The
simulations provide the uncalibrated parameters of the
vertical beam oscillations to about per mill accuracy,
and giving the kinematic, ring, and Wien filter parame-
ters to four digits appears therefore sufficient. It should
be noted that within the simulation calculations carried
out in the context of the present work, all quantities
have been computed to double precision (machine ep-
silon of 1.11× 10−16). Of the physical quantities, the
highest sensitivity to the vertical betatron tune is ex-
hibited by the theoretical estimate for Hooke’s constant,
dkth

H /dνy ≈ 2× 103 MeV/m2. The largest uncertainty
contributing to the error of the detected oscillation am-
plitudes arises from the calibration factor κ of the beam
position monitor, given in Eq. (B2). It amounts to about
7.3% and is considered a systematic scale-factor uncer-
tainty (see AppendixB).

Appendix B: Calibration of beam position monitor

The complex amplitudes measured by the lock-in am-
plifiers describe the magnitude and phase of each signal,
and are here expressed by the corresponding real and
imaginary components, denoted by X and Y , respec-
tively, i.e., A = X + iY . Examples of the data recorded
at the sum frequency fΣ and at the revolution frequency
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TABLE II. Current I (in % of the maximum admissible cur-
rent) in the vertical steerers to generate bumps and the cor-
responding position change of the vertical orbit y by ∆y at
the location of BPM 17.

I (steerer) [%] y [mm] ∆y [mm]
−5 −7.756± 0.030 −7.466± 0.030

−4 −6.684± 0.038 −6.395± 0.038

−3 −5.629± 0.016 −5.339± 0.016

−2 −4.518± 0.020 −4.229± 0.020

−1 −3.489± 0.018 −3.119± 0.018

0 −2.439± 0.029 −2.150± 0.029

+1 −1.429± 0.020 −1.140± 0.020

+2 −0.288± 0.028 0.000± 0.000

+3 +0.798± 0.044 +1.085± 0.044

+4 +1.872± 0.014 +2.160± 0.014

+5 +2.928± 0.069 +3.211± 0.069

f rev are shown in Fig. 14. The observed weak attenua-
tion of the beam current during a measurement cycle by
less than 7% clearly indicates a weak beam loss by in-
trabeam or residual gas interactions, thus justifying our
treatment of the beam as a rarefied gas. The effect of
switching on the power amplifiers of the Wien filter at
t = 60 s is clearly visible. In both panels, one observes
a separation of the quantities recorded by the top and
bottom electrodes in the µV range for both frequencies
after the Wien filter is switched on. This separation is
much more pronounced at the Wien filter frequency than
at the revolution frequency.

The quantities Arev
t and Arev

b , given in Eqs. (16), are re-
lated to a vertical beam displacement ∆y in the following
way,

R =
Arev

t −Arev
b

Arev
t +Arev

b
= κ

2U0∆y

2U0
= κ∆y . (B1)

The calibration constant κ is experimentally determined
by introducing local vertical beam bumps in the ring at
the location of BPM17. The orbit positions y and the
orbit displacements ∆y, listed in Table II, differ by the
position of the unperturbed orbit, and are generated by
altering the current of a set of vertical steerers.

The steerer magnets have well-known conversion fac-
tors from current to magnetic field. The calibration fac-
tor κ is obtained by fitting the ratio R from Eq. (B1) as
a function of the vertical orbit variation ∆y, exhibiting
the nearly linear relationship shown in Fig. 15. The slope
corresponds to

κ = (5.82± 0.43) · 10−6 µm−1 . (B2)

Appendix C: Simulation uncertainties

The uncertainties of the simulated amplitudes of the
beam oscillations are computed using the Polynomial
Chaos Expansion (PCE) algorithm. The functionality of

Algorithm 1: Sparse Polynomial Chaos
Expansion [19].

Data: Generates Gaussian-distributed ensemble of
uncertain circuit parameters using the Latin
Hypercube Sampling (LHS) scheme Xi

Result: Compute uncertainty of ξy
Given Xi, run full wave simulations;
Generate 3D electric and magnetic fields;
Run beam tracking simulations to compute ξyi;
Standardize input data Xi −→ X̃i;
Guess hyperbolic truncation norm, q-norm;
Start with lowest possible expansion order p;
Generate basis functions Hp(X̃i) (pth-order Hermite
polynomials);

Generate hyperbolically truncated set of basis
functions Hq

p(X̃i);
Apply Least-Angle Regression (LAR) algorithm;
Estimate optimum sparse set of basis functions
Hq∗
p (X̃i);

Compute expansion coefficients Cj , given
ξyi =

∑
j CjH

q∗
p (X̃i);

Compute leave-one-out error LOOerr;
Check convergence condition( LOOerr < 10−2);
while not convergent do

Enhance model (vary p and q);
if convergent then

Generate large sample of ξy;
Estimate statistical parameters;
Terminate algorithm;

else
Enrich input samples Xi;
Repeat algorithm;

the algorithm is explained below for one of the simulated
data points of the map shown in Fig. 9.

The PCE algorithm offers an alternative to the well-
known Monte-Carlo (MC) method without compromis-
ing the intended accuracy. It uses orthogonal polynomi-
als to represent randomly changing variables to describe
observables by means of a finite (truncated) series (for
more details, see, e.g., Ref. [19]). When the defined cri-
teria of convergence are met, the expansion coefficients
can be used to generate an arbitrarily large sample of ob-
servables, from which the uncertainties can be computed
to the desired statistical accuracy.

The PCE algorithm has been compared with the MC
method in many applications and has been shown to
provide very reliable results [40]. The PCE requires
much fewer simulations to converge compared to the MC
method. For instance, for the present case, 200 beam
tracking simulations per point in the 2D the map of beam
oscillations, shown in Fig. 9 were sufficient to reach con-
vergence. In cases where the number of random input
variablesm is larger than 10, the PCE method offers clear
advantages over the MC method. The reason is that the
number of basis functions in the PCE method increases
enormously as a consequence of the tensor product of the
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(a) Real (XΣ) and imaginary part (Y Σ) of the complex Fourier
amplitudes AΣ at the Wien filter frequency.

(b) Real (Xrev) and imaginary part (Y rev) of the complex Fourier
amplitudes Arev at the revolution frequency.

FIG. 14. Fourier amplitudes A = X + iY for the top and bottom electrodes of BPM17 recorded by the lock-in amplifier as a
function of time in the cycle at a strongly mismatched point (CL = 907.79 pF and CT = 885.58 pF), at the Wien filter frequency
(a), and at the revolution frequency (b). In both panels, the stored beam current is shown in black. The cycle starts right
after injection is completed at t = 0 s, beam preparation continues until t = 55 s, and the Wien filter is switched on and data
acquisition starts at t = 60 s. At t = 156 s the Wien filter is switched off and data acquisition stops.

FIG. 15. Calibration curve of BPM17. The ratio R, de-
fined in Eq. (B1), depends on the introduced vertical beam
displacement ∆y at the beam position monitor.

involved polynomials. Therefore, the algorithm has been
improved further to allow for a reduction of the num-
ber of simulations required. Such an approach is also
adopted here, as described in Algorithm1. The hyper-
bolic truncation scheme together with the Least-Angle
Regression (LAR) method form a sparse version of the
original algorithm.

An m-dimensional set is first created, representing N
combinations of simultaneous random variables. Many
methods can be used to generate such sets, and here the
Latin-hypercube sample scheme is adopted [31]. Subse-
quently, the set is standardized for convergence reasons.
Depending on the distribution of the data, the basis func-
tions, here Hermite polynomials, are determined. The
number of basis functions restricts the lower limit of the
number of simulations (full-wave and tracking) which are
usually computationally expensive. As a rule of thumb,

with N basis functions, the PCE algorithm requires at
least 1.5×N (in this case, full-wave) simulations to con-
verge. The number of basis functions itself can, how-
ever, be reduced by the hyperbolic truncation scheme
that eliminates higher-order terms that do not have a
significant impact on the observation objects [44, 45].
Furthermore, by applying the LAR algorithm, the num-
ber of remaining basis functions can be further reduced
substantially, whereby the problem becomes computa-
tionally solvable in a very efficient fashion.

The matching point, specified in Eq. (19), yields the
minimum measurable beam oscillations, as given by
Eq. (20). This experimental result can be estimated us-
ing the beam-tracking calculations. Subsequently, the
concrete steps of the application of the PCE algorithm
are discussed.

All the reasonable sources of uncertainties of the cir-
cuit are represented by 15 random parameters that are
allowed to vary simultaneously. At first, a sample of
(200×15) entries is generated using the Latin-hypercube
sampling scheme. As an example of this sample, the vari-
ation of the three circuit elements CL, CT, and the load
resistor Rf is shown in Fig. 16(a).

All the uncertain parameters in the electromagnetic
circuit simulations are used to generate the electric and
magnetic fields shown in Fig. 10. These are subsequently
used in the beam-tracking calculations. For the match-
ing point of the map [Eq. (19)], N = 200 full-wave simu-
lations were conducted. The import of these field maps
into the beam-tracking calculations resulted in a set of
N = 200 values of ξy. This set is not directly used to
conduct the statistical analysis. Instead, in conjunction
with the input samples, these data are used as input to
the sparse PCE algorithm.

The optimum set of basis function is determined us-
ing the LAR algorithm, as shown in Fig. 16(b). With
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(a) Sample of CL, CT, and Rf used in the PCE
calculations showing a subset of the

15-dimensional input of random circuit
uncertainties.
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standard truncation

hyperbolic truncation

LAR

(b) Truncation schemes of the PCE algorithm.

(c) Expansion coefficients on a semi-log scale. 91
coefficients have been selected after applying the

LAR algorithm to the matching point.

(d) Comparison between the tracking results and
the PCE with respect to the oscillation

amplitude, determined using the expansion
coefficients of (c).

FIG. 16. Intermediate results of the PCE algorithm applied at the matching point [see Eq. (19)]. Quantitative results of the
PCE algorithm are summarized in Table III.

an expansion order of p = 6 and a truncation norm
q = 0.35, executing the PCE algorithm required 91 basis
functions to converge, reflected by the low value of the
leave-one-out error LOOerr = 1.7× 10−4. Subsequently,
the expansion coefficients are computed, qualitatively de-
picted in Fig. 16(c). It is shown in Fig. 16(d) that the
PCE algorithm perfectly reproduces the tracking results
using these expansion coefficients. Finally, these coeffi-

cients are used to reconstruct a larger sample of ξy to
estimate the error σξy . Figure 11 shows 104 of the 106

reconstructed samples. The PCE parameters used are
summarized in Table III.

The fitting of these results with a Gaussian, as depicted
in panel (b) of Fig. 11, yields a standard deviation of
σξy = 0.082 µm. The same technique is repeated for each
point in the map.
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