000905301 001__ 905301
000905301 005__ 20230310131314.0
000905301 0247_ $$2doi$$a10.1021/acsanm.1c03166
000905301 0247_ $$2Handle$$a2128/30312
000905301 0247_ $$2WOS$$aWOS:000752919200093
000905301 037__ $$aFZJ-2022-00572
000905301 041__ $$aEnglish
000905301 082__ $$a540
000905301 1001_ $$0P:(DE-HGF)0$$aPazniak, Hanna$$b0$$eCorresponding author
000905301 245__ $$aPhase Stability of Nanolaminated Epitaxial (Cr1–xFex)2AlC MAX Phase Thin Films on MgO(111) and Al2O3 (0001) for Use as Conductive Coatings
000905301 260__ $$aWashington, DC$$bACS Publications$$c2021
000905301 3367_ $$2DRIVER$$aarticle
000905301 3367_ $$2DataCite$$aOutput Types/Journal article
000905301 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642431966_26836
000905301 3367_ $$2BibTeX$$aARTICLE
000905301 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905301 3367_ $$00$$2EndNote$$aJournal Article
000905301 520__ $$aIn this study, we model the chemical stability in the (Cr1–xFex)2AlC MAX phase system using density functional theory, predicting its phase stability for 0 < x < 0.2. Following the calculations, we have successfully synthesized nanolaminated (Cr1–xFex)2AlC MAX phase thin films with target Fe contents of x = 0.1 and x = 0.2 by pulsed laser deposition using elemental targets on MgO(111) and Al2O3(0001) substrates at 600 °C. Structural investigations by X-ray diffraction and transmission electron microscopy reveal MAX phase epitaxial films on both substrates with a coexisting (Fe,Cr)5Al8 intermetallic secondary phase. Experiments suggest an actual maximum Fe solubility of 3.4 at %, corresponding to (Cr0.932Fe0.068)2AlC, which is the highest Fe doping level achieved so far in volume materials and thin films. Residual Fe is continuously distributed in the (Fe,Cr)5Al8 intermetallic secondary phase. The incorporation of Fe results in the slight reduction of the c lattice parameter, while the a lattice parameter remains unchanged. The nanolaminated (Cr0.932Fe0.068)2AlC thin films show a metallic behavior and can serve as promising candidates for highly conductive coatings.
000905301 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000905301 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x1
000905301 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905301 7001_ $$0P:(DE-HGF)0$$aMarc Stevens, Martin Dahlqvist$$b1
000905301 7001_ $$0P:(DE-Juel1)186870$$aZingsem, Benjamin$$b2
000905301 7001_ $$0P:(DE-Juel1)169107$$aKibkalo, Lidia$$b3
000905301 7001_ $$0P:(DE-HGF)0$$aFelek, Merve$$b4
000905301 7001_ $$0P:(DE-HGF)0$$aVarnakov, Sergey$$b5
000905301 7001_ $$0P:(DE-HGF)0$$aMichael Farle$$b6
000905301 7001_ $$0P:(DE-HGF)0$$aRosen, Johanna$$b7
000905301 7001_ $$0P:(DE-HGF)0$$aWiedwald, Ulf$$b8$$eCorresponding author
000905301 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.1c03166$$gVol. 4, no. 12, p. 13761 - 13770$$n12$$p13761 - 13770$$tACS applied nano materials$$v4$$x2574-0970$$y2021
000905301 8564_ $$uhttps://juser.fz-juelich.de/record/905301/files/acsanm.1c03166.pdf
000905301 8564_ $$uhttps://juser.fz-juelich.de/record/905301/files/Pazniak%20et%20al%20%28003%29.pdf$$yPublished on 2021-12-03. Available in OpenAccess from 2022-12-03.
000905301 8564_ $$uhttps://juser.fz-juelich.de/record/905301/files/Pazniak%20et%20al%20SI%20revised%20%28002%29.pdf$$yPublished on 2021-12-03. Available in OpenAccess from 2022-12-03.
000905301 909CO $$ooai:juser.fz-juelich.de:905301$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg$$b0
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden$$b1
000905301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186870$$aForschungszentrum Jülich$$b2$$kFZJ
000905301 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169107$$aForschungszentrum Jülich$$b3$$kFZJ
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany$$b4
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia$$b5
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany$$b6
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden$$b7
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
000905301 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany$$b8
000905301 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000905301 9141_ $$y2021
000905301 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905301 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000905301 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000905301 920__ $$lyes
000905301 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000905301 980__ $$ajournal
000905301 980__ $$aVDB
000905301 980__ $$aUNRESTRICTED
000905301 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000905301 9801_ $$aFullTexts