| Hauptseite > Publikationsdatenbank > Phase Stability of Nanolaminated Epitaxial (Cr1–xFex)2AlC MAX Phase Thin Films on MgO(111) and Al2O3 (0001) for Use as Conductive Coatings > print |
| 001 | 905301 | ||
| 005 | 20230310131314.0 | ||
| 024 | 7 | _ | |a 10.1021/acsanm.1c03166 |2 doi |
| 024 | 7 | _ | |a 2128/30312 |2 Handle |
| 024 | 7 | _ | |a WOS:000752919200093 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-00572 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Pazniak, Hanna |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Phase Stability of Nanolaminated Epitaxial (Cr1–xFex)2AlC MAX Phase Thin Films on MgO(111) and Al2O3 (0001) for Use as Conductive Coatings |
| 260 | _ | _ | |a Washington, DC |c 2021 |b ACS Publications |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642431966_26836 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In this study, we model the chemical stability in the (Cr1–xFex)2AlC MAX phase system using density functional theory, predicting its phase stability for 0 < x < 0.2. Following the calculations, we have successfully synthesized nanolaminated (Cr1–xFex)2AlC MAX phase thin films with target Fe contents of x = 0.1 and x = 0.2 by pulsed laser deposition using elemental targets on MgO(111) and Al2O3(0001) substrates at 600 °C. Structural investigations by X-ray diffraction and transmission electron microscopy reveal MAX phase epitaxial films on both substrates with a coexisting (Fe,Cr)5Al8 intermetallic secondary phase. Experiments suggest an actual maximum Fe solubility of 3.4 at %, corresponding to (Cr0.932Fe0.068)2AlC, which is the highest Fe doping level achieved so far in volume materials and thin films. Residual Fe is continuously distributed in the (Fe,Cr)5Al8 intermetallic secondary phase. The incorporation of Fe results in the slight reduction of the c lattice parameter, while the a lattice parameter remains unchanged. The nanolaminated (Cr0.932Fe0.068)2AlC thin films show a metallic behavior and can serve as promising candidates for highly conductive coatings. |
| 536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |x 0 |f POF IV |
| 536 | _ | _ | |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726) |0 G:(GEPRIS)405553726 |c 405553726 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Marc Stevens, Martin Dahlqvist |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Zingsem, Benjamin |0 P:(DE-Juel1)186870 |b 2 |
| 700 | 1 | _ | |a Kibkalo, Lidia |0 P:(DE-Juel1)169107 |b 3 |
| 700 | 1 | _ | |a Felek, Merve |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Varnakov, Sergey |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Michael Farle |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Rosen, Johanna |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Wiedwald, Ulf |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsanm.1c03166 |g Vol. 4, no. 12, p. 13761 - 13770 |0 PERI:(DE-600)2916552-0 |n 12 |p 13761 - 13770 |t ACS applied nano materials |v 4 |y 2021 |x 2574-0970 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/905301/files/acsanm.1c03166.pdf |
| 856 | 4 | _ | |y Published on 2021-12-03. Available in OpenAccess from 2022-12-03. |u https://juser.fz-juelich.de/record/905301/files/Pazniak%20et%20al%20%28003%29.pdf |
| 856 | 4 | _ | |y Published on 2021-12-03. Available in OpenAccess from 2022-12-03. |u https://juser.fz-juelich.de/record/905301/files/Pazniak%20et%20al%20SI%20revised%20%28002%29.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:905301 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)186870 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169107 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-04 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|