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Abstract
Several studies have investigated the correlation of structural and functional brain

variations, as captured by brain imaging, to behavioural and demographic variation (e.g. Llera
et al.). However, there have not been many direct comparisons between the ability of these
variations to predict behavior at an individual level. Furthermore, the ability of these findings to
generalize across datasets has scarcely been explored.

Here, we compared imaging features derived from structural, diffusion and functional
MRI in predicting behavioural scores derived from the Human Connectome Project [HCP] (Van
Essen et al, 2013) and the Adolescent Brain Cognitive Development study [ABCD] (Volkow et
al., 2018). Additionally, we investigate whether using a combination of imaging features can
result in an improved prediction.

We found that in both datasets, functional MRI outperforms other modalities in the
prediction of behaviour, especially in the field of cognition. Furthermore, we find that combining
task and resting state functional MRI gives an increase in prediction accuracy equivalent to
combining all features from all modalities.

Behavioural Components of the HCP and ABCD Combining fMRI states is just as good as 
combining across all modalities

Methods
• Stage 1: Dataset
v HCP: n=753; 53.1% male; mean age 28.6
v ABCD:  n=1506; 45.6% male; mean age 10.1

• Stage 2: Processing imaging features
v Structural features: Cortical area, thickness and volume were calculated for each ROI of 

the Schaefer parcellation (Schaefer et al., 2018)
v Diffusion features:  A DTI and relaxed NODDI model (Dadduci et al., 2015) were fitted to 

the diffusion data. Probablistic tractography was run for each subject. The metrics of the 
models were sampled using the TBSS skeleton (Smith et al., 2006), and along the tracts 
generated by the tractography.

v Functional features: A functional connectivity matrix was calculated by finding the pairwise 
correlation of each ROI for task and resting fMRI

• Stage 3: Processing behavioural features
v A factor analysis was conducted for each dataset, and we predicted 3 resulting  

components
• Stage 4: Single modality behavioural prediction
v Imaging features from each modality were used as predictors in a Kernel Ridge 

Regression [KRR] (Kong et al., 2019) and their resulting accuracies were compared over 
600 splits in the HCP and 120 splits in the ABCD

• Stage 5: Multiple modality behavioural prediction
v Modalities were combined in a 1) multiKRR model (Chen et al., 2020) and 2) stacking 

model and compared to the best performing single modality model

•Scores in each dataset under went a principal component analysis and varimax rotation

1) Cognition is predicted more accurately compared to other aspects of behavior, regardless of 
the modality

2) We show that fMRI outperforms other modalities in predicting behavior, especially in the field 
of cognition

3) Combining information from different modalities increases prediction accuracy for cognition
4) Combining task and rest fMRI gives an improvement to prediction of cognition, that is 

equivalent to or better than combining all modalities

Conclusion
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•The resulting scores from these components were used as the target variables for prediction

HCP Prediction Results
Structural features
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HCP Prediction Results ABCD Prediction Results

•Combining information across modalities always improved prediction of cognition
•Combining information from resting and task fMRI had an equivalent or better performance 
than combining all features from all modalities

Statistically significant

Statistically significant

•The best performing single model for each dataset (HCP: fMRI language / ABCD fMRI 
nback) was compared to 2 methods of combining modalities – multiKRR and stacking

Schaefer 400 ROI parcellation
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Diffusion features (tractography)

•All modalities 
predicted 
cognition better 
than other 
aspects of 
behavior

• fMRI gave the 
best prediction 
across all aspects 
of behavior, this 
was especially 
true for cognition

•These findings 
were replicated 
across both 
datasets
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