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Introduction: Hippocampus dysfunction is the hallmark of Alzheimer’s pathology and is 
frequently investigated with FDG-PET metabolism measurements. However, while metabolic 
changes are a key aspect of Alzheimer’s disease (AD), different hippocampus’ subregions with 
their specific metabolic covariance (MC) networks haven’t been identified in healthy 
populations. It is also unclear to what extent these are affected by AD pathophysiology. As the 
hippocampus portrays cytoarchitectural, connectional and functional heterogeneity, 
heterogenous patterns of MC could be expected, leading to hippocampal subregions being 
differentially affected by AD pathology.   
 

Methods:  We investigated MC as correlations in metabolism between hippocampus and 
brain voxels in a large cohort of healthy older participants (n=362). To identify how the pattern 
of brain MC changes spatially within the hippocampus, we used a data-driven approach to 
cluster hippocampal voxels based on their whole brain co-metabolism profile (Eickhoff, Yeo, 
& Genon, 2018). The stability of different parcellation levels was measured using split-half 
cross-validation. We then examined the whole brain co-metabolism profile of each subregion 
using the general linear model. To examine whether the local metabolism between the 
metabolically-identified subregions in healthy older is influenced by AD pathology, we also 
performed a two-way ANOVA in the healthy older and in a cohort of ADNI patients (n=581) 
with the mean glucose uptake value as a dependent variable and both the subregions and 
diagnostic groups as factors. The ANOVA was followed by post-hoc analyses to identify which 
particular group differences are statistically significant while correcting for multiple 
comparisons. The results were compared with results of the same analysis using the 
structurally-defined and widely used FreeSurfer’s subfields. 
 
Results: A stable 5-clusters parcellation could be identified which included an Anterior-
subiculum(Red), an Anterior-CA(Yellow), an Intermediate-subregion(Pink), a Posterior-
subiculum(Blue) and a Posterior-CA(Green) subregions (Fig. 1-A). As illustrated in Fig. 1-C, the 
Anterior-subiculum(Red) subregion mainly relates to orbito-frontal and temporal regions 



while the Intermediate-subregion (Pink) is a transitional subregion towards the Posterior-
subiculum(Blue) subregion which has a wide pattern of cortical MC. The Anterior-CA(Yellow) 
subregion mainly relates to the amygdala while the Posterior-CA(Green) subregion mainly 
relates to other subcortical structures (Fig. 1-C). For both hippocampal parcellations, the two-
way ANOVA revealed both significant main and interaction effects. Nevertheless, overall, the 
differentiation between CA subregions as provided by FreeSurfer did not exhibit specific group 
differences while the anterior-vs-posterior distinction offered by our parcellation revealed 
specific group differences, in particular in the early stages (Table 1).   
 
Conclusions:  
Overall, our results suggest a MC based differentiation within the hippocampus that follows 
the CAs vs Subiculum differentiation known from local microstructure mapping (Fig. 1B) and 
anatomical connectivity (Fig. 1D). The MC patterns of the identified subregions suggested 
three main networks relating the anterior subregions to orbitofrontal and anterior temporal 
regions, the Posterior-CA(Green) subregion to subcortical structures around the ventricles, 
and the Posterior-subiculum(Blue) subregion to an extended cortical pattern (Fig. 1C). These 
MC patterns converge with the patterns of structural covariance previously shown in healthy 
aging (Plachti et al., 2020)(Fig. 1E), as well as the different factors of brain atrophy reported in 
AD (Zhang et al., 2016)(Fig. 1F) reinforcing the relevance of the derived differentiation in 
pathological aging. Finally, our parcellation allows the identification of specific diagnostic 
group differences in regional hippocampus metabolism.   
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(Archer et al., 2020; Brown et al., 2017) 
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