000905338 001__ 905338
000905338 005__ 20230123110552.0
000905338 0247_ $$2doi$$a10.1016/j.matchemphys.2021.125435
000905338 0247_ $$2ISSN$$a0254-0584
000905338 0247_ $$2ISSN$$a1879-3312
000905338 0247_ $$2Handle$$a2128/30294
000905338 0247_ $$2WOS$$aWOS:000729396600005
000905338 037__ $$aFZJ-2022-00606
000905338 041__ $$aEnglish
000905338 082__ $$a530
000905338 1001_ $$0P:(DE-HGF)0$$aWang, Chen-An$$b0
000905338 245__ $$aSmall-angle-scattering resolved catanionic unilamellar vesicles as molecule carriers
000905338 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000905338 3367_ $$2DRIVER$$aarticle
000905338 3367_ $$2DataCite$$aOutput Types/Journal article
000905338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642425381_31326
000905338 3367_ $$2BibTeX$$aARTICLE
000905338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905338 3367_ $$00$$2EndNote$$aJournal Article
000905338 520__ $$aStructure and composition of the unilamellar vesicles (ULV) formed with catanionic surfactant of sodium dodecylsulfate (SDS) and cetyltrimethylammonium bromide (CTAB) are revealed using small-angle X-ray and neutron scattering (SAXS and SANS) and freeze-fracture-replication transmission electron microscopy (FFR-TEM). Imaging and scattering results consistently indicate a globular shape of the ULV, having a core size of 48 nm and a bilayer thickness of 32 Å; the bilayer comprises a central aliphatic shell of 24 Å, sandwiched by two headgroup shells, each of ca. 4 Å thickness. From the zero-angle scattering intensity ratio of the SAXS and SANS data, a SDS/CTAB composition ratio of 3:4 for the ULV bilayer is deduced. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (P123), a triblock copolymer, is found to intervene into the ULV bilayer of the catanionic surfactant in solution, leading to successively enlarged complex ULV, as P123 concentration in the solution increases. The ULV of SDS/CTAB is saturated with P123-loading after a critical concertation of 0.067 mM P123; thereafter, formation and proliferation of constant-sized, P123-based core-shell micelles are observed with increase of P123 concentration. A structural model of P123-embedded ULV of the catanionic surfactant is proposed. These results suggest a capacity and limits of using the catanionic ULV as molecule carriers.
000905338 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000905338 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905338 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000905338 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000905338 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000905338 7001_ $$0P:(DE-HGF)0$$aYeh, Yi-Qi$$b1
000905338 7001_ $$0P:(DE-HGF)0$$aMou, Chung-Yuan$$b2
000905338 7001_ $$0P:(DE-HGF)0$$aSu, Chun-Jen$$b3
000905338 7001_ $$0P:(DE-HGF)0$$aWu, Wei-Ru$$b4
000905338 7001_ $$00000-0002-2247-5061$$aJeng, U-Ser$$b5$$eCorresponding author
000905338 773__ $$0PERI:(DE-600)1491959-X$$a10.1016/j.matchemphys.2021.125435$$gVol. 277, p. 125435 -$$p125435$$tMaterials chemistry and physics$$v277$$x0254-0584$$y2022
000905338 8564_ $$uhttps://juser.fz-juelich.de/record/905338/files/Revised%20ULV%20SDS-CTAB%20MAT-PHY-CHE.pdf$$yPublished on 2021-11-16. Available in OpenAccess from 2023-11-16.
000905338 909CO $$ooai:juser.fz-juelich.de:905338$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000905338 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000905338 9141_ $$y2022
000905338 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000905338 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000905338 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905338 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000905338 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-25$$wger
000905338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER CHEM PHYS : 2021$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000905338 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000905338 920__ $$lyes
000905338 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000905338 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000905338 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000905338 980__ $$ajournal
000905338 980__ $$aVDB
000905338 980__ $$aUNRESTRICTED
000905338 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000905338 980__ $$aI:(DE-588b)4597118-3
000905338 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000905338 9801_ $$aFullTexts