001     905340
005     20240506205521.0
024 7 _ |a 10.1093/braincomms/fcab227
|2 doi
024 7 _ |a 2128/30286
|2 Handle
024 7 _ |a altmetric:116931309
|2 altmetric
024 7 _ |a 34778761
|2 pmid
024 7 _ |a WOS:000804791900052
|2 WOS
037 _ _ |a FZJ-2022-00608
082 _ _ |a 610
100 1 _ |a Bonkhoff, Anna K
|0 P:(DE-Juel1)162183
|b 0
245 _ _ |a Dynamic connectivity predicts acute motor impairment and recovery post-stroke
260 _ _ |a [Großbritannien]
|c 2021
|b Guarantors of Brain
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714997172_17176
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thorough assessment of cerebral dysfunction after acute lesions is paramount to optimize predicting clinical outcomes. We herebuilt random forest classifier-based prediction models of acute motor impairment and recovery post-stroke. Predictions relied onstructural and resting-state fMRI data from 54 stroke patients scanned within the first days of symptom onset. Functional connectivitywas estimated via static and dynamic approaches. Motor performance was phenotyped in the acute phase and 6 months later.A model based on the time spent in specific dynamic connectivity configurations achieved the best discrimination between patientswith and without motor impairments (out-of-sample area under the curve, 95% confidence interval: 0.6760.01). In contrast,patients with moderate-to-severe impairments could be differentiated from patients with mild deficits using a model based on thevariability of dynamic connectivity (0.8360.01). Here, the variability of the connectivity between ipsilesional sensorimotor cortexand putamen discriminated the most between patients. Finally, motor recovery was best predicted by the time spent in specific connectivityconfigurations (0.8960.01) in combination with the initial impairment. Here, better recovery was linked to a shortertime spent in a functionally integrated configuration. Dynamic connectivity-derived parameters constitute potent predictors of acuteimpairment and recovery, which, in the future, might inform personalized therapy regimens to promote stroke recovery.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rehme, Anne K
|0 P:(DE-Juel1)165784
|b 1
700 1 _ |a Hensel, Lukas
|0 P:(DE-Juel1)142144
|b 2
700 1 _ |a Tscherpel, Caroline
|b 3
700 1 _ |a Volz, Lukas J
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Espinoza, Flor A
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gazula, Harshvardhan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vergara, Victor M
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 8
|u fzj
700 1 _ |a Calhoun, Vince D
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rost, Natalia S
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 11
|e Corresponding author
773 _ _ |a 10.1093/braincomms/fcab227
|g Vol. 3, no. 4, p. fcab227
|0 PERI:(DE-600)3020013-1
|n 4
|p fcab227
|t Brain communications
|v 3
|y 2021
|x 2632-1297
856 4 _ |u https://juser.fz-juelich.de/record/905340/files/Bonkhoff_2021a_Brain_comm_stroke.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905340
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN COMMUN : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-21T13:34:18Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-02-21T13:34:18Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21