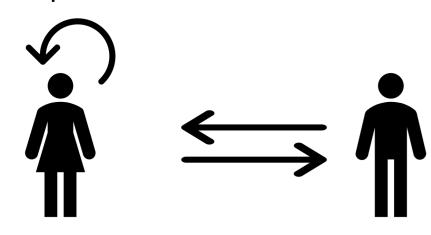


Inter- and intra-subject similarity in network functional connectivity under naturalistic stimulation

JÜLICH Forschungszentrum



Lisa N. Mochalski^{1,2}, Patrick Friedrich², Simon B. Eickhoff^{1,2} & Susanne Weis^{1,2}

¹Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ²Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany, I.mochalski@fz-juelich.de

Introduction

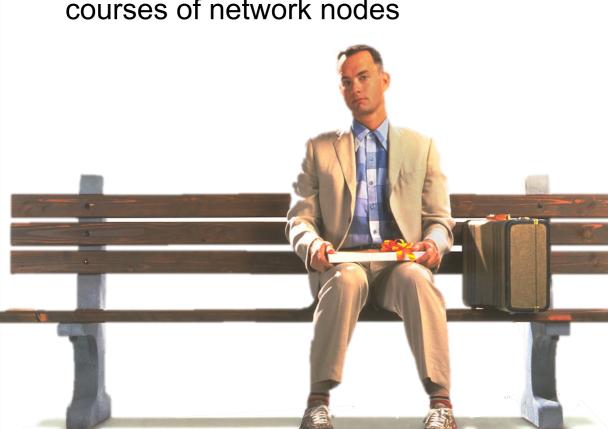
- increased interest relationship between inter-individual differences in neuroimaging and phenotypical data
- Two important factors:

- I. Variabiliy 2. Variabiliy between
- benefit both intra- and inter-subject variability compared to resting-statefMRI paradigms¹
- Functional networks a priori informed data reduction

 Investigate inter- and intra- subject similarity in network functional connectivity (NFC) during naturalistic viewing (NV)

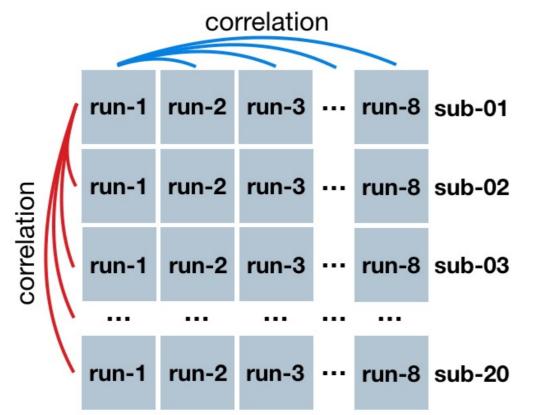
Meta-analytically defined networks:

- autobiographical memory (AM)²
- cognitive attention control (CogAC)³
- extended multiple demand network (eMDN)⁴
- emotional scene and face processing (EmoSF)⁵
- Empathy⁶
- theory of mind (ToM)⁶
- emotion regulation (ER)⁷
- extended socio-affective default (eSAD)⁸
- mirror neuron system (MNS)⁹
- Motor¹⁰
- reward (Rew)¹¹
- semantic memory (SM)¹²
- vigilant attention (VigAtt)¹³
- working memory (WM)¹⁴

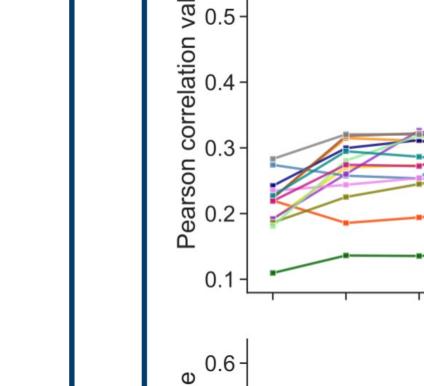

Methods

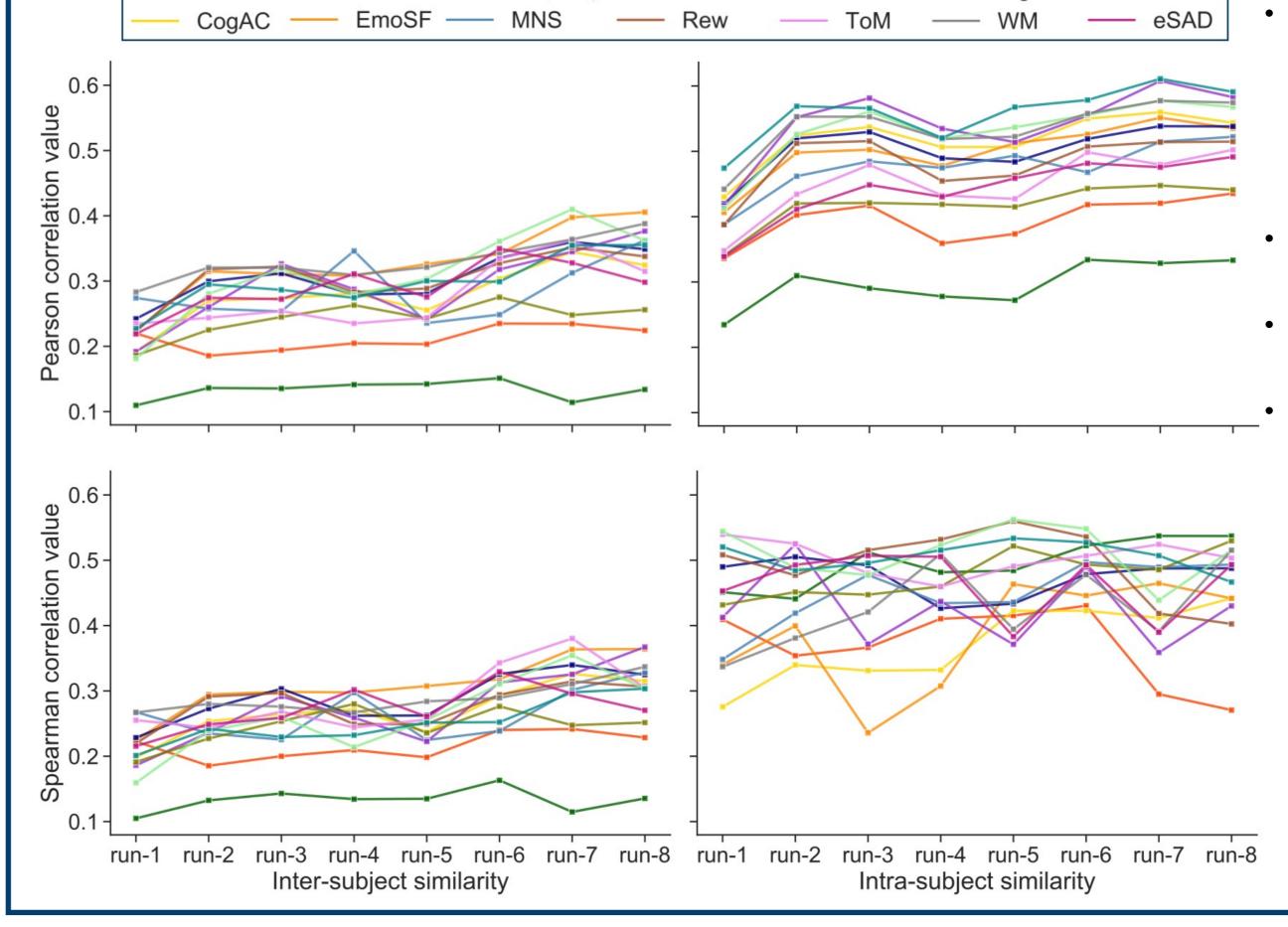
Sample:

• 14 participants, 6 females, mean age 29.4 years


Functional imaging data:

- 2 hours of "Forrest Gump" NV-fMRI split into 8 runs of ~15 min
- 3 Philipps Achieva dStream MRI scanner, 32 channel head coil
- T2*-weighted EPI images, TR = 2s, echo time = 30ms, flip angle = 90° voxel size = 3mm, slices = 35
- Minimally preprocessed
- Extraction of functional connectivity as Pearson correlation between time courses of network nodes


Variability in NFC


Comparison of results based on Pearson and Spearman correlation

Calculation of inter- and intra-SC. Squares represent NFC matrices. Exemplary for one network, calculation of inter-SC and intra-SC of run-1 of sub-01 are shown. Inter-SC is calculated by averaging the correlation values (red) between run-1 of sub-01 and run-1 of all other subjects. Intra-SC is calculated by averaging the correlation values (blue) between run-1 of sub-01 and all other runs of

Results network

Inter-subject similarity:

- Pearson: two-way ANOVA: sign. main effect of run (F(7,1456) =p < .001), **network** (F(13,1456) = 75.83, p < .001) and interaction effect run*network (F(91,1456) = 2.611, p < .001)
- Sign. increase after run 1 across all networks
- ER, AM and SM sign. different from all other networks
- Spearman: two-way ANOVA: sign. main effects of run (F(7,1456) =p < .001), **network** (F(13,1456) = 63.774, p < .001) and an interaction effect run*network (F(91,1456) = 2.908, p < .001)

Intra-subject similarity:

- Pearson: two-way ANOVA: sign. main effect of run (F(7,1456) =**network** (F(13,1456) = 29.462, p <.001), but no sign. run*network interaction effect (F(91,1456)) =0.162, p = 1)
- Sign. increase after run 1 across all networks
- ER network sign. different from all other networks, AM and SM networks sign. different from most networks
- Spearman: two-way ANOVA: sign. main effects of run (F(7,1456) =3.96, p < .001), **network** (F(13,1456) = 16.574, p < .001) and **interaction** effect run*network (F(91,1456) =2.014, p < .001)
- Different pattern in runs and networks, interaction only based on one network

Discussion

Runs

- Subjects' NFC get more similar to each other's and their own NFC after first run, but there is no sign. continuous, gradual increase
- Longer scanning time does not have universal effect on inter- and intrasubject similarity
- Differences between first and later runs might relate to familiarization with scanner environment and movie paradigm

Networks

- Emotion regulation autobiographical memory (AM) and semantic memory (SM) networks were most different from other networks in both inter- and intrasubject similarity; this might be related to subjective experience of movie and individual memories
- No clear pattern in regard to network domains (cognitive, emotional mnemonic, social, motor)

Inter-subject similarity

- Similarity between subjects in different networks depends on run: run*network interaction might indicate relevance of movie content
- But no clear distinction between content of movie and runtime possible based on these data
- Annotation of movie content or features might enable more precise analyses on which features increase inter-subject similarity in which networks

Intra-subject similarity

- No run*network interaction in intrasubject similarity
- Similarity between subjects' own NFC plateaus after first run
- · Different levels of similarity between networks
- Differences in the results pattern between Pearson- and Spearmancorrelation -> variance in connectivity strength is better preserved via Pearson correlation in contrast to simple rank test

Conclusion:

- inter-subject similarity results indicate that movie content, but not length of the movie may induce relevant variance between subjects
- Intra-subject similarity in NFC seems more stable across runs within networks
- Rank-based correlation might be less suited when correlations on network node level are within small range

References

¹Finn et al., 2017; ²Spreng, Mar & Kim, 2008; ³Cieslik, Mueller, Eickhoff, Langner, & Eickhoff, 2013; ⁴Camilleri et al., 2016; ⁵Sabatinelli et al. 2011; ⁶Bzdok et al., 2012; ⁷Buhle et al., 2014; ⁸Amft et al., 2015; ⁹Caspers et al., 2016; ¹⁰Witt, Meyerand, & Laird, 2008; ¹¹Liu, Hairston, Schrier, & Fan, 2011; ¹²Binder et al., 2009; ¹³Langner & Eickhoff, 2013; ¹⁴Rottschy et al., 2012

Acknowledgments

We thank the StudyForrest Project for making all data publicly available.