001     905372
005     20250513093406.0
024 7 _ |2 doi
|a 10.1111/jace.18334
024 7 _ |2 ISSN
|a 0002-7820
024 7 _ |2 ISSN
|a 1551-2916
024 7 _ |2 WOS
|a WOS:000742762600001
024 7 _ |2 Handle
|a 2128/31310
037 _ _ |a FZJ-2022-00625
041 _ _ |a English
082 _ _ |a 660
100 1 _ |0 P:(DE-Juel1)174079
|a Kindelmann, Moritz
|b 0
|e Corresponding author
245 _ _ |a Processing map to control the erosion of Y 2 O 3 in fluorine based etching plasmas
260 _ _ |a Westerville, Ohio
|b Soc.
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1655201305_17363
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Due to the increasing number of applications for ceramic components in reactive etching processes, the interest in the specific erosion behavior of highly etch-resistant materials like yttrium oxide (Y2O3) has increased in the past years. Despite the large number of investigations already existing in this field, a more general understanding of the erosion mechanisms still lacks due to the limited comparability of these investigations. The huge difference in the kind of etching setups, processing parameters (bias voltage and plasma gas composition), and sample microstructures prevented consistent conclusions so far. To achieve a more general understanding, this study investigates the erosion behavior Y2O3 under a broad spectrum of plasma etching parameters. Therefore, the bias voltage is increased from 50 to 300 V and the plasma gas composition is gradually changed from Ar-rich to CF4-rich compositions. This systematic approach allows to directly correlate the morphology changes caused by plasma erosion with the related plasma etching parameters and enables to better understand their influence on the depth of physical and chemical interactions, surface damage, and etching rate. We discovered three distinct erosion regimes, which exhibit specific erosion characteristics. Using these observations, a schematic processing map for Y2O3 was developed, which could help to estimate the severity of the erosion attack dependent on the processing parameters.
536 _ _ |0 G:(DE-HGF)POF4-5353
|a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|c POF4-535
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5233
|a 5233 - Memristive Materials and Devices (POF4-523)
|c POF4-523
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Weber, Moritz Lukas
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Stamminger, Mark
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Buschhaus, Rahel
|b 3
700 1 _ |0 P:(DE-Juel1)133840
|a Breuer, Uwe
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129591
|a Bram, Martin
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 6
773 _ _ |0 PERI:(DE-600)2008170-4
|a 10.1111/jace.18334
|g p. jace.18334
|n 5
|p 3498-3509
|t Journal of the American Ceramic Society
|v 105
|x 0002-7820
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/905372/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202022%20-%20Kindelmann%20-%20Processing%20map%20to%20control%20the%20erosion%20of%20Y2O3%20in%20fluorine.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905372
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174079
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)174079
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133840
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129591
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-535
|1 G:(DE-HGF)POF4-530
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5353
|a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|v Materials Information Discovery
|x 0
913 1 _ |0 G:(DE-HGF)POF4-523
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5233
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Neuromorphic Computing and Network Dynamics
|x 1
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2021-01-27
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2022-11-22
|w ger
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J AM CERAM SOC : 2021
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2022-11-22
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2022-11-22
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0001
|2 APC
|a Local Funding
915 p c |0 PC:(DE-HGF)0002
|2 APC
|a DFG OA Publikationskosten
915 p c |0 PC:(DE-HGF)0120
|2 APC
|a DEAL: Wiley 2019
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 4
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21