000905376 001__ 905376
000905376 005__ 20230123110553.0
000905376 0247_ $$2doi$$a10.1111/pce.14257
000905376 0247_ $$2Handle$$a2128/31036
000905376 0247_ $$2altmetric$$aaltmetric:121060087
000905376 0247_ $$2pmid$$apmid:35037265
000905376 0247_ $$2WOS$$aWOS:000748351400001
000905376 037__ $$aFZJ-2022-00629
000905376 041__ $$aEnglish
000905376 082__ $$a580
000905376 1001_ $$0P:(DE-HGF)0$$aAmini$$b0
000905376 245__ $$aThe molecular basis of zinc homeostasis in cereals
000905376 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2022
000905376 3367_ $$2DRIVER$$aarticle
000905376 3367_ $$2DataCite$$aOutput Types/Journal article
000905376 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649852125_25495
000905376 3367_ $$2BibTeX$$aARTICLE
000905376 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905376 3367_ $$00$$2EndNote$$aJournal Article
000905376 520__ $$aPlants require zinc (Zn) as an essential cofactor for diverse molecular, cellular and physiological functions. Zn is crucial for crop yield, but is one of the most limiting micronutrients in soils. Grasses like rice, wheat, maize, and barley are crucial sources of food and nutrients for humans. Zn deficiency in these species therefore not only reduces annual yield but also directly results in Zn malnutrition of more than two billion people in the world. There has been good progress in understanding Zn homeostasis and Zn deficiency mechanisms in plants. However, our current knowledge in monocots, including grasses, remains insufficient. In this review, we provide a summary of our knowledge on molecular Zn homeostasis mechanisms in monocots, with a focus on important grass crops. We additionally highlight divergences in Zn homeostasis of monocots and the dicot model Arabidopsis thaliana, as well as important gaps in our knowledge that need to be addressed in future research on Zn homeostasis in cereal monocots.
000905376 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000905376 588__ $$aDataset connected to DataCite
000905376 7001_ $$0P:(DE-Juel1)165155$$aArsova, Borjana$$b1$$ufzj
000905376 7001_ $$0P:(DE-HGF)0$$aHanikenne$$b2$$eCorresponding author
000905376 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.14257$$n5$$p1339-1361$$tPlant, cell & environment$$v45$$x0140-7791$$y2022
000905376 8564_ $$uhttps://juser.fz-juelich.de/record/905376/files/Plant%20Cell%20Environment%20-%202022%20-%20Amini%20-%20The%20molecular%20basis%20of%20zinc%20homeostasis%20in%20cereals.pdf
000905376 8564_ $$uhttps://juser.fz-juelich.de/record/905376/files/Amini-ZnMonocot_Review_figures.pdf$$yRestricted
000905376 8564_ $$uhttps://juser.fz-juelich.de/record/905376/files/Amini-ZnMonocot_Review_postacceptance_final.pdf$$yPublished on 2022-01-17. Available in OpenAccess from 2023-01-17.$$zStatID:(DE-HGF)0510
000905376 909CO $$ooai:juser.fz-juelich.de:905376$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165155$$aForschungszentrum Jülich$$b1$$kFZJ
000905376 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000905376 9141_ $$y2022
000905376 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000905376 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000905376 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905376 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000905376 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000905376 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-24$$wger
000905376 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2021$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-24
000905376 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2021$$d2022-11-24
000905376 920__ $$lyes
000905376 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000905376 980__ $$ajournal
000905376 980__ $$aVDB
000905376 980__ $$aUNRESTRICTED
000905376 980__ $$aI:(DE-Juel1)IBG-2-20101118
000905376 9801_ $$aFullTexts