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Electronic instabilities in Penrose quasicrystals: Competition, coexistence,
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Quasicrystals lack translational symmetry, but can still exhibit long-range order, promoting them to candidates
for unconventional physics beyond the paradigm of crystals. Here, we apply a real-space functional renormal-
ization group approach to the prototypical quasicrystalline Penrose tiling Hubbard model treating competing
electronic instabilities in an unbiased, beyond-mean-field fashion. Our work reveals a delicate interplay between
charge and spin degrees of freedom in quasicrystals. Depending on the range of interactions and hopping
amplitudes, we unveil a rich phase diagram including antiferromagnetic orderings, charge density waves, and
subleading, superconducting pairing tendencies. For certain parameter regimes, we find a competition of phases,
which is also common in crystals, but additionally encounter phases coexisting in a spatially separated fashion
and ordering tendencies which mutually collaborate to enhance their strength. We therefore establish that
quasicrystalline structures open up a route towards this rich ordering behavior uncommon to crystals and that an
unbiased, beyond-mean-field approach is essential to describe this physics of quasicrystals correctly.
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I. INTRODUCTION

The discovery of quasicrystals has triggered exciting, pio-
neering experimental [1–7] and theoretical [8–17] research on
the topic. Recently, in experimental studies, superconductivity
[18] as well as antiferromagnetic ordering [19] were observed
in quasicrystalline systems and their approximants, which are
large clusters of quasicrystalline tilings as periodically re-
peated unit cells. These new experimental findings, especially
the reported superconductivity, cannot be explained by our
current theory and, therefore, new theoretical approaches are
needed. For theory, an intrinsic complication of quasicrystals
is the nonlayered structure in three dimensions (3D). An ex-
ception to this are twisted materials, such as twisted bilayer
graphene, which form a quasiperiodic lattice in the x-y plane
projection for a variety of incommensurable twisting angles
[5]. Additionally, the lack of translational symmetry in qua-
sicrystals leads to a loss of momentum conservation, resulting
in severe computational challenges, necessitating the use of
simplifying models.
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A much-studied example and one of the prototype models
of a two-dimensional (2D) quasiperiodic structure is the Pen-
rose model (a Hubbard model on a Penrose tiling) [20,21],
which we examine in this paper. It has a single point of
global fivefold rotational symmetry and a local tenfold rota-
tional symmetry [22]. The Penrose tiling can be seen as the
2D cut through an icosahedral quasicrystal [1] and consti-
tutes a prototypical model to understand many phenomena in
quasicrystalline materials on a qualitative basis, e.g., it is cur-
rently being used to investigate the experimentally observed
superconductivity [23–28], although a direct connection to
the three-dimensional materials is less clear. Other platforms
which can be used to more faithfully realize the 2D Penrose
model are quantum simulators [29] using ultracold atomic
gases. Possible explanations for the experimentally reported
superconductivity in quasicrystals include the existence of
unconventional superconducting order generated by spin fluc-
tuations [25]. However, the mean-field (MF) theory employed
in these studies is biased due to the choice of the decoupling
and it remains unclear whether other orderings might prevail.
Thus, there is clear demand for an unbiased, beyond-MF study
to explore the physics of quasicrystals.

In this paper, we systematically study the electronic in-
stabilities of the quasicrystalline Penrose model employing
such a beyond-MF method, i.e., the real-space truncated
unity functional renormalization group (TUFRG) developed
here [30,31]. The real-space TUFRG offers a versatile tool
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FIG. 1. Illustration of quasicrystal lattices. Penrose tiling, iter-
ated four times, with the vertex model (left) and the center model
(right). Nearest neighbors are marked as red bonds. The rhombi re-
ferred to in the main text are shown in gray for the center model. The
lattice sites are marked as blue dots. The hoppings in the Hamiltonian
are set to t0 only if a red line connects the two sites in question.

for the study of translation symmetry-broken models, such
as quasicrystals, and scales favorably enough to reach the
thermodynamic limit. Utilizing this advance, we unveil the
surprisingly rich ordering behavior of quasicrystals expanding
significantly on what is realized in crystals. Studying different
Penrose models and parameters, we find either a mutual sup-
pression of order, similar to a competition of phases known
from crystals, or mutual evasion of order as well as mutual
collaboration of multiple ordering tendencies. The latter two
are both usually not found in crystals. With this, we expand
the catalog of how phases of matter emerge in quasicrystals
and show that in general, one requires an unbiased, beyond-
MF approach to capture the intricate nature and interplay of
orderings in these systems.

II. MODEL AND METHOD

We examine a Penrose tiling generated by the substitution
method [32] using 10 triangles as the initial configuration.
Based on this tiling, we construct Hubbard models with sites
located on either the vertices or the centers of the rhombi
of the lattice, called vertex or center models, respectively
(compare Fig. 1). In all the simulations presented here, we
employ 3126 lattice sites in the vertex model or 3010 in the
center model. The phases and critical scales do not change
significantly upon further increasing the lattice size. The Hub-
bard Hamiltonian in second quantization reads

H = −
∑
i, j,σ

(ti, j + μδi, j )c
†
i,σ c j,σ + 1

2

∑
i,σ,σ ′

Uni,σ ni,σ ′

+ 1

2

∑
〈i, j〉,σ,σ ′

U ′ni,σ n j,σ ′ , (1)

with the operators c(†)
i,σ annihilating (creating) an electron on

site i with spin σ . We concentrate on two cases for the hopping
amplitudes ti, j . First, we apply nearest-neighbor hoppings
for which ti, j = t0 for neighboring sites, shown as red lines
in Fig. 1, while for all non-nearest neighbors, ti, j = 0. Sec-
ond, we consider exponentially decaying hoppings using an

exponential form ti, j = t0e1− |ri−r j |
a . Here, ri is the real-space

position of the site i. We choose the minimal distance of any

two sites, a = mini j |ri − r j |, as lattice spacing and measure
bond lengths relative to it [25]. For convenience, we set units
by t0 = 1. We assume spin independence of the interaction
with an on-site repulsion U and a nearest-neighbor repulsion
U ′, resulting in an SU(2)-symmetric Hamiltonian. This is a
convenient, but in no means necessary, simplification for our
approach (see Appendix A). All of our results are calculated
at temperature T = 10−3.

To treat possible competing orders in an unbiased fashion,
we employ a real-space variant of the TUFRG [30,31,33–
35], based on a one-loop formulation of the FRG [36,37]. In
a FRG scheme, a cutoff function R(�) is introduced in the
bare propagator, such that the system reduces to a solvable
problem at an initial scale. At a final scale, the full solution
is recovered. By variations of the cutoff parameter �, one
obtains an infinite set of differential flow equations. This
set of flow equations needs to be truncated in order to be
numerically tractable, lending a perturbative motivation to the
FRG. Here, we employ one of the most commonly applied
truncations, keeping only the effective two-particle interaction
without its frequency dependence, which was successfully
applied before in 2D for the study of competing instabilities
in crystalline structures [36,38–40]. The diagrams for the
effective interaction can be classified into three groups or
channels. Each of the channels is related to a separate effective
MF Hamiltonian [36]. Thus, a divergence (also called flow
to strong coupling) in a certain channel can be directly as-
sociated with an emergent order parameter and possibly to a
gap opening in the corresponding MF picture, indicative of a
phase transition. The emergent phase and its spatial structure
are encoded in the type and value of the diverging channel.
More specifically, the so-called pairing channel indicates an
opening of the pairing gap, the spin channel of a magnetic gap,
and the charge channel of a charge gap (see Appendix B for
details).

The real-space TUFRG approach exploits the dependency
of each of these channels on so-called native indices. These
native indices are the dependencies generated in a random
phase approximation calculation, which is equivalent to a
FRG flow without intrachannel coupling. Dependencies be-
yond these native indices are only generated at higher orders
in the interaction, where the further apart the third and fourth
indices are from the native ones, the higher the necessary
interaction order becomes to generate these contributions.
Motivated by this, we introduce projections onto each chan-
nel’s native indices as follows:

P̂[�]bi,b j

i, j = �(i, i + bi; j, j + b j )

=
∑
k,l

�(i, k; j, l ) fbi (k) f ∗
b j

(l ),

Ĉ[�]bi,b j

i, j = �(i, j + b j ; j, i + bi )

=
∑
k,l

�(i, k; j, l ) fbi (l ) f ∗
b j

(k),

D̂[�]bi,b j

i, j = �(i, j + b j ; i + bi, j)

=
∑
k,l

�(i, k; l, j) fbi (l ) f ∗
b j

(k), (2)
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where � is a general vertex object and the different projections
are marked with a letter to associate them to their respective
channel. The pairing channel is abbreviated as P, the spin
channel as C, and the charge channel as D. The form fac-
tors or bonds fbl (l ) form an orthonormal basis on the lattice
defined by ∑

i

fbi (i) f ∗
b′

i
(i) = δbi,bi′ ,

∑
bk

fbk (i) f ∗
bi

(i′) = δi,i′ . (3)

Due to the perturbatively motivated character of FRG, it
is reasonable to neglect terms generated at high orders in the
interaction, which translates to restricting the bonds used in
the expansions in Eq. (2) to a small subset of the full lattice,
effectively reducing the size of the projected channels. The
flow equations for the projected channels are obtained by
inserting the definitions in the original flow equations and
introducing a productive unity; see Appendix A for a detailed
derivation. This leads to the following flow equations in the
SU(2) invariant case:

dP

d�
= −P̂[�] · χ̇pp · P̂[�],

dC

d�
= −Ĉ[�] · χ̇ph · Ĉ[�],

dD

d�
= 2D̂[�] · χ̇ph · D̂[�] − Ĉ[�] · χ̇ph · D̂[�]

− D̂[�] · χ̇ph · Ĉ[�], (4)

where P, C, and D are the respective channels projected on
their main dependencies, and � is the effective interaction
reconstructed by

� = U + P̂−1[P] + Ĉ−1[C] + D̂−1[D]. (5)

Here, χ̇pp and χ̇ph are the scale differentiated particle-particle
and particle-hole propagators, which can be calculated from
the Greens function G = R(λ)(iω − H )−1 and the single scale
propagator S = ∂�R(λ)(iω − H )−1 by

χ̇
bi,b j

ph(i, j) = 2T
∑
ω>0

Re[G(ω)i, jS(ω) j+b j ,i+bi + G ↔ S],

χ̇
bi,b j

pp(i, j) = 2T
∑
ω>0

Re[G(ω)i, jS(−ω)i+bi, j+b j + G ↔ S],

where T is the temperature. In this formula, we already used
the symmetry of the summand with respect to frequency to
reduce the numerical effort. Throughout this paper, we will
use the so-called 
 cutoff [41] given by

R(�) = ω2

ω2 + �2
. (6)

In practice, the spatial ordering is extracted from the lead-
ing eigenvectors of the diverging channel. We stop the flow if
an eigenvalue of one of the three channels surpasses a thresh-
old corresponding to the stopping scale denoted as � = �c.

Due to the employed open boundary conditions, the kinetic
energy is reduced at the edges of the lattice, increasing the
relative relevance of the interaction there. To avoid phases

FIG. 2. Vertex model at μ = 0.0: Competition of order. We em-
ploy Eq. (7) for the interaction. The upper left plot visualizes the
charge order parameter at U ′ = 1.5 and U = 1. The lower left plot
visualizes the spin order parameter (or magnetization pattern) at
U ′ = 0.5 and U = 2.0. On the right side, the critical scales depend-
ing on the nearest-neighbor interaction are shown for U = 3.0 in
the vicinity of the phase transition, to highlight the suppression of
the critical scale upon approaching the phase transition. We find a
competition of the two phases at the transition, similar to the behavior
prototypically found in conventional crystals.

arising solely due to this boundary effect, in case they do not
coexist with a spatially separated bulk phase, we employ a
tanh envelope falling off to the boundary,

U sc
i j = Ui j

2
{tanh[10(dmax − di )

2] + tanh[10(dmax − d j )
2]},

(7)

where di = |ri| and dmax = maxidi. Introducing this envelope,
we can probe the bulk phase diagram more easily, which is
related to the thermodynamic limit by the self-similarity of
the lattice.

III. COMPETING ORDERS IN THE VERTEX MODEL

First, we investigate the vertex model including nearest-
neighbor hopping at half filling (μ = 0.0). The model is
bipartite and known to show antiferromagnetic ordering in
the case of U ′ = 0 and U > 0 [42,43]. The density of states
(DoS) has a δ-like peak at ω = 0.0 separated by a small gap
from the rest of the spectrum (see Appendix D). This peak
does not arise due to a Van Hove singularity (which is very
relevant in the context of ordering in crystals), but instead
occurs due to a macroscopic number of degenerate states with
zero eigenvalue [44–46]. To access the bulk phase diagram of
the vertex model, we employ the envelope given by Eq. (C2).

We encounter two different phases. For U � U ′, an anti-
ferrromagnetic spin density wave (SDW) instability prevails
with a similar ordering pattern (see lower left plot in Fig. 2)
to the ordering pattern at half filling without nearest-neighbor
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interactions (U ′ = 0) [42]. For increased U ′/U , the leading
divergence changes to a charge density wave (CDW) (see
upper left plot in Fig. 2). We do not discuss these orderings in
detail here as, on the one hand, such discussions can be found
elsewhere [43,44] and, on the other hand, we want to focus on
the interplay in between the two ordering types. The transition
between SDW and CDW is accompanied by a reduction of
the critical scales, as can be seen in the right plot in Fig. 2.
The critical scale without coupling the different channels with
each other is �c ≈ 0.4 at the transition, but the ordering
vectors are correctly predicted by this simplified calculation.
This implies that the divergences are generated within each
of the channels individually, in contrast to fluctuation-driven
divergences which are generated by the feedback of one chan-
nel to another. In the simulation incorporating interchannel
feedback, the critical scale is reduced to �c ≈ 0.18. Thus, we
conclude that the ordering tendencies compete, leading to a
mutual suppression of the phases.

To sum up, the physics of the vertex model is similar to the
one of crystals with translational invariance, where multiple
mutually competing bulk orders take center stage.

IV. SPATIAL COEXISTENCE OF ORDER IN THE
NEAREST-NEIGHBOR CENTER MODEL

Next, we examine a center model including nearest-
neighbor hopping and interactions without employing
Eq. (C2), as here a bulk-boundary coexistence of order is
observed. This model is not bipartite and, in contrast to the
vertex model, each site has the coordination number four. Its
DoS (see Appendix D) displays two main peaks consisting
of a macroscopic number of degenerate states (as discussed
above): one at ω ≈ 2.35 and one at ω = 2.00.

We concentrate on a Fermi level at the main features at
ω = 2.00, which arises in parts due to so-called string states,
which are self-similar states with a fractional dimension of
1.44 [9,10]. Here, we find a CDW as well as two different
SDW divergences depending on the values of U and U ′.
At U � U ′, we find an on-site SDW ordering, whereas at
U ′ � U , we find an on-site CDW ordering (see Appendix F).
In the transition region between the two, a SDW phase with
a more complex ordering pattern emerges. This leads to two
distinct phase transitions: one is a smooth interpolation from
a bulk ordered on-site SDW to a boundary pinned phase, the
second one is a transition between the latter phase and a bulk
ordered on-site CDW. The second transition has a mutually
evasive nature, as the two occurring orderings have vanishing
spatial overlap, as we will analyze next. The region in which
the transition between the SDW and CDW occurs is of special
interest to us. In contrast to the vertex model, the strongest two
channels, namely, charge and spin channel, diverge on equal
footing and have their main weight in separate regions. This
separation leads to a gap opening in different spatial regions
of the lattice, i.e., a coexistence of two different orderings.
To show this more clearly, we proceed with a MF decoupling
of the effective FRG interaction at the final scale �c (see
Appendix B or [47]). The spatially separated support of the
nonzero gaps for charge and spin order are shown in Fig. 3.
The charge order forms in the center as a self-similar structure
and shows alternating signs. The spin order emerges close to

FIG. 3. Center model at μ = 2.0: Coexistence of order. Gap
values of the decoupled effective interaction at �c for U = 1 and
U ′ = 1.015. Leading ordering strengths of the charge and spin order-
ing channels have approximately the same magnitude. The calculated
gap magnitudes are shown in a red-blue color scheme for the spin
gap, which is equivalent to the magnetization. In the violet-lime color
scheme, the charge gap is shown. The two faces have no spatial
overlap of magnitudes above 10−3 max(�). The coexistence of the
two phases is found to be a general feature of this phase transition.

the boundary of the system and has strongly peaked maximal
values separated by an order of magnitude from the lower
gap values. In the transition region separating the phases, both
have low weight. This behavior arises generically for U and
U ′ combinations at the transition line between the charge and
spin ordering. The coexistence is quite sensitive to changes
in U and U ′, as moving away from the transition line rapidly
promotes a single phase. Due to the spatially separated nature,
the two orders coexist without affecting each other.

Summarizing these findings, we have identified a coexis-
tence of mutually evasive orders with clear spatial separation
in the center Penrose model. Such instabilities can likely only
be found in structures with (infinitely) large unit cells such as
true quasicrystals, their large-scale approximants, or twisted
moiré materials.

V. COLLABORATIVE ORDER IN THE CENTER
MODEL WITH EXPONENTIALLY DECAYING

HOPPING AMPLITUDES

Finally, we investigate the phase diagram of a center model
with hopping amplitudes decaying exponentially in real space.
For such models, recently an unconventional superconducting
order has been predicted [25]. The DoS in this setup has
three main peaks, at ω ≈ 0.83, 0.99, 1.23 (see Appendix D).
Between the second and the third peak, there is a small energy
gap. The most interesting physics is again expected for the
Fermi level at the DoS peaks or in their vicinity. For the
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FIG. 4. Center model with exponentially decaying hopping am-
plitudes at μ = 0.99: Collaboration of order. In the upper left, the
maximal eigenvalues of the pairing and charge channel relative to
the one of the spin channel are shown for U = 0.3. The expected
ordering pattern for the spin channel is visualized in the upper right
plot, the one for the charge channel in the lower left plot, and the
one for the pairing channel in the lower right plot. We observe a
slow decay of the relative maximal eigenvalues, pointing at a possible
unconventional ground state. The ordering patterns of the three chan-
nels have spatial overlap, and therefore there is no spatial evasion of
order.

simulations, we chose U ′ = 0 and again employed Eq. (C2)
in order to suppress the boundary states.

A SDW is the dominant phase in the whole interaction
region at all three peaks of the DoS. Its ordering pattern is
dependent on the filling as well as the interaction strength U
(see Appendix G). Upon decreasing U to 0.3, we observe the
emergence of a subleading pairing divergence indicated by a
slower decay of the fraction of maximal eigenvalues of the
pairing and spin channel, λ

pair
max/λ

spin
max, than at higher interactions.

This is accompanied by the loss of the standard behavior
for an emergent spin ordering, namely, that λ

charge
max /λ

spin
max = 1/2

[36]. Instead, we find that λ
charge
max /λ

spin
max decreases slightly upon

approaching the critical scale; see Fig. 4. These findings
imply only slightly different critical exponents for the three
different ordering tendencies. Analogous multichannel insta-
bilities are known to signal nontrivial non-MF ground states in
one-dimensional models for correlated fermions [48–50] and
were argued to indicate Fermi surface truncations in the two-
dimensional Hubbard models [51–53]. Yet, in this case as well
as in ours, orders collaborate and a proper classification of the
true ground state needs further work. In any case, it is exciting
to see that quasicrystalline systems offer another playground
to exhibit such physics at the frontier of our understanding.

To sum up, in the center model with exponentially decaying
hopping amplitudes, we find a delicate mutual collaboration
of ordering tendencies, pointing to an unconventional ground
state. Here, MF decouplings are highly biased and a more
sophisticated approach needs to be employed. Recent theo-
retical reports of superconductivity should therefore be taken

with caution if they focus on one particular channel in a MF
treatment [25].

VI. CONCLUSIONS

We used a recently developed real-space TUFRG formal-
ism to study the electronic instabilities in quasicrystals. With
their infinite-size unit cells, the spatial degree of freedom in
these systems opens up even greater variety of ordering ten-
dencies beyond competition, allowing for spatial coexistence
by mutual evasion and joint, collaborative instabilities. We ex-
pect similar findings for large but finite unit cell systems, with
twisted van der Waals heterostructures as the most prominent
[54], but certainly not last, example.

An intriguing avenue of future research concerns the study
of disordered vertex arrangements or quasicrystalline approx-
imants which could help in understanding the interesting
interplay between interactions and lattice geometry in qua-
sicrystals. Additionally, an in-depth study of the observed
orderings’ robustness towards rotational symmetry breaking
of the lattice could reveal new emerging orderings. As a
next step, it is desirable to keep a higher accuracy, e.g., by
taking into account the self-energy effects [55] and the fre-
quency dependence of the vertex [31,56–58]. This allows one
to include interactions mediated by phonons or photons and
thus to study conventional superconductivity in quasicrystals
[24]. On the level of real materials, the next step is the
development of a feasible beyond-interorbital-bilinears [59]
approach, combining the here employed real-space TUFRG
with the momentum-space TUFRG [30]. With such a scheme,
3D-quasicrystalline approximants can be addressed, opening
the ground for predictions of phase diagrams of real materials
if combined with density functional theory inputs [60,61].
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APPENDIX A: DERIVATION OF THE FLOW EQUATIONS

We now sketch the derivation of the flow equations. The
effective vertex can be separated in three different channels,
with each of them related to a specific fermionic bilinear [36].
A divergence of their eigenvalues indicates a flow to strong
coupling, which in turn can lead to the opening of a specific
gap in the self-energy. The P channel indicates pairing, the
C channel gives information of magnetic ordering tendencies,
and charge ordering information is contained in the D channel.
We called the P channel the pairing channel, the C channel
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is called the spin channel, and the D channel is called the
charge channel in the main text to highlight their physical
meaning. Technically, the charge ordering information has to
be extracted from the physical charge channel [41], but if no
other channels diverge, the ordering can be extracted directly

from the D channel or, as called in the main text, the charge
channel. This can be seen by a mean-field decoupling in the
three native channels; see below. In general, we can write
the effective two-particle interaction �(4) as (suppressing the

dependency on the flow parameter �)

(A1)

Each number represents a multi-index consisting of orbital, spin, and frequency indices. We will use quoted numbers, or quoted
indices, for all degrees of freedom which are summed. The flow equation for the effective interaction can be separated in those
three channels [30], as can be seen in Eqs. (A2a)–(A2c). As all occurring quantities are � dependent, we will from now on leave
out the subscript,

d�P(1, 2; 3, 4)

d�
= −

∑
�(1, 2; 1′, 2′)[G(1′, 3′)S(2′, 4′)]�(3′, 4′; 3, 4), (A2a)

d�C (1, 2; 3, 4)

d�
=

∑
�(1, 4′; 1′, 4)[G(1′, 3′)S(2′, 4′) + S(1′, 3′)G(2′, 4′)]�(3′, 2; 3, 2′), (A2b)

d�D(1, 2; 3, 4)

d�
= −

∑
�(1, 3′; 3, 2′)[G(1′, 3′)S(2′, 4′) + S(1′, 3′)G(2′, 4′)]�(4′, 2; 1′, 4). (A2c)

We will neglect the frequency dependence of the vertex, and therefore we switch to letters as indices, each of which describes
a lattice point with the associated spin. The truncated unity approach that we develop is analog to the momentum-space one.
There, the main idea is that without interchannel coupling, the equations amount to a standard random phase approximation
(RPA) series which will only produce a dependency on two spatial indices, or a single momentum (if the interaction is local).
If we now include the coupling, we will technically generate dependencies on all indices, but the “native” ones will contain the
main features, as configurations beyond those are only generated at higher order in the interaction strength. This indicates that
only two orbital indices are of central importance and should be treated with high accuracy, and for the others a lower accuracy
is sufficient. We want to exploit this by an expansion of each of the non-native indices in a basis centered at a native one. In
a general real-space setting, the basis is dependent on the position it is centered around. Mathematically speaking, we use a
form-factor expansion of pairwise orthonormal functions which form a complete basis [see Eq. (A3)],∑

i

fbk (i) f ∗
b′

k
(i) = δbk ,bk′ ,

∑
bk

fbk (i) f ∗
bk

(i′) = δi,i′ . (A3)

Later the included bonds in the unity are restricted to a small subset. We start with general bonds for the derivation and specify
them later on. With the usage of a basis, we define the projections onto the main dependencies of each channels in Eq. (A4) as

P̂[�]bi,b j

i, j = �(i, i + bi; j, j + b j ) =
∑
k,l

�(i, k; j, l ) fbi (k) f ∗
b j

(l ),

Ĉ[�]bi,b j

i, j = �(i, j + b j ; j, i + bi ) =
∑
k,l

�(i, k; j, l ) fbi (l ) f ∗
b j

(k),

D̂[�]bi,b j

i, j = �(i, j + b j ; i + bi, j) =
∑
k,l

�(i, k; l, j) fbi (l ) f ∗
b j

(k). (A4)

This is exact and just a rewriting of the vertex as long as we do not truncate the basis. The full vertex can be recovered by an
unprojection, the inverse projection, using the completeness relation in Eq. (3). Further, we define the channels projected on their
respective native indices in Eq. (A5),

P
bi,b j

i, j = P̂[�P]bi,b j

i, j , C
bi,b j

i, j = Ĉ[�C]bi,b j

i, j , D
bi,b j

i, j = D̂[�D]bi,b j

i, j . (A5)

Thus we recover the full vertex by applying

� = U + P̂−1[P] + Ĉ−1[C] + D̂−1[D]. (A6)
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The flow equations for the projected channels can be derived from Eqs. (A2a)–(A2c) with the help of an insertion of a unity,
here shown as an example for the P channel,

−dP
bi,b j

i, j

d�
=

∑
k,l

d�P(i, k; j, l )

d�
fbi (k) f ∗

b j
(l )

=
∑

k,l,i′,k′, j′,l ′
fbi (k) f ∗

b j
(l )�(i, k; i′, k′)

∑
n′,m′

δn′,k′ [G(i′, j′)S(n′, m′)]δm′,l ′�( j′, l ′; j, l )

=
∑

k,l,i′,k′, j′,l ′
fbi (k) f ∗

b j
(l )�(i, k; i′, k′)

∑
bi′ ,n′,b j′ ,m′

{
fbi′ (k

′) f ∗
bi′

(n′)[G(i′, j′)S(n′, m′)] fb j′ (l
′) f ∗

b j′
(m′)�( j′, l ′; j, l )

}

=
∑

b′
i,i

′, j′,b′
j

[∑
k,k′

fbi (k) f ∗
bi′

(k′)�(i, k; i′, k′)

]{∑
n′,m′

fbi′ (n
′) f ∗

b j′
(m′)[G(i′, j′)S(n′, m′)]

}[∑
l ′,l

fb j′ (l
′) f ∗

b j
(l )�( j′, l ′; j, l )

]

=
∑

b′
i,i

′, j′,b′
j

P̂[�]bi,bi′
i,i′ χ̇

bi′ ,b j′
pp(i′, j′ )P̂[�]

b j′ ,b j

j′, j . (A7)

The other equations can be derived analogously, resulting in
the following coupled set of differential equations:

dP
bi,b j

i, j

d�
= −P̂[�]bi,bi′

i,i′ χ̇
b′

i,b
′
j

pp(i′, j′ )P̂[�]
b j′ ,b j

j′, j , (A8)

dC
bi,b j

i, j

d�
= Ĉ[�]bi,bi′

i,i′ χ̇
b′

i,b
′
j

ph(i′, j′ )Ĉ[�]
b j′ ,b j

j′, j , (A9)

dD
bi,b j

i, j

d�
= −D̂[�]bi,bi′

i,i′ χ̇
b′

i,b
′
j

ph(i′, j′ )D̂[�]
b j′ ,b j

j′, j , (A10)

where we defined the particle-particle and particle-hole prop-
agators as

χ̇
b′

i,b
′
j

pp(i′, j′ ) =
∑
n′,m′

fbi′ (n
′) f ∗

b j′
(m′)[G(i′, j′)S(n′, m′)], (A11)

χ̇
b′

i,b
′
j

ph(i′, j′ ) =
∑
n′,m′

fbi′ (n
′) f ∗

b j′
(m′)[G(i′, j′)S(n′, m′)

+ S(i′, j′)G(n′, m′)]. (A12)

The equations can be reinterpreted in terms of multi-
index block-matrix products which are well optimized
numerically.

As already mentioned, we now want to truncate the ba-
sis expansion used in the derivation. This will, in fact, not
change the projected flow equations, but it will change the
vertex reconstruction as the inverse projection is no longer
exact. Therefore, we obtain projections in between the three
channels. The way that the basis is chosen as well as how it
is truncated are not unique. The choice of a specific trunca-
tion can either be physically or systematically motivated. For
example, the first one can be applied in moiré-lattice models,
where we have two competing length scales. It is believed that
such models can exhibit superconductivity at the scale of unit
cell vectors, which then could be included explicitly in the
expansion. The second approach excludes contributions above
a certain bond length or distance in a controlled manner. We
can express this truncation as∑

bk∈L

fbk (i) f ∗
bk

(i) =
∑

bk

δL
bk

fbk (i) f ∗
bk

(i) ≈ 1, (A13)

where we defined the set of all allowed bonds L. We define
δL

bk
to be one if bk ∈ L, and zero otherwise. To obtain the

explicit projections needed for the flow equations, we now
insert this into the full vertex projections and keep track of all
occurring indices. Without specifying a specific basis or writ-
ing out spin dependencies, we obtain the general form of the
projections as

P̂[�]bi,b j

i, j = P̂[U + P̂−1[P] + Ĉ−1[C] + D̂−1[D]]bi,b j

i, j ,

(A14)

Ĉ[�]bi,b j

i, j = Ĉ[U + P̂−1[P] + Ĉ−1[C] + D̂−1[D]]bi,b j

i, j ,

(A15)

D̂[�]bi,b j

i, j = D̂[U + P̂−1[P] + Ĉ−1[C] + D̂−1[D]]bi,b j

i, j .

(A16)

Before specifying our basis, we take care of the spin degrees
of freedom.

SU(2) symmetric formulation

To get rid of the spin degrees of freedom, we will now
assume that we have a SU(2)-symmetric interaction and
Hamiltonian, which allows one to simplify the channels with
the help of the crossing relations [37],

�P(ik; jl )σiσkσ jσl = V P(ki; jl )δσiσ j δσkσl − V P(ik; jl )δσiσl δσkσ j ,

�C (ik; jl )σiσkσ jσl = V D(ki; jl )δσiσ j δσkσl − V C (ik; jl )δσiσl δσkσ j ,

�D(ik; jl )σiσkσ jσl = V C(ki; jl )δσiσ j δσkσl − V D(ik; jl )δσiσl δσkσ j .

(A17)

The spin degrees of freedom can now be eliminated by choos-
ing a specific spin configuration. The full spin dependence
can be reconstructed by applying the relations in Eq. (A17).
For the sake of simplicity, we choose (σiσkσ jσl ) = (↑↓↓↑)

and redefine P
bib j

i j = V P(i, i + bi; j, j + b j ), and analogously
for C and D. The diagrammatic flow equations now read as
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HAUCK, HONERKAMP, ACHILLES, AND KENNES PHYSICAL REVIEW RESEARCH 3, 023180 (2021)

follows:

To write out the equations explicitly, we use Kronecker
δ’s spanning the lattice around a specific site as a basis,
defined as fbi (k) = δi+bi,k . We additionally assume a density-
density-type interaction. The sums in Eqs. (A8)–(A10) can be
reinterpreted as matrix products in the multi-indices consist-
ing of orbital and bond indices. Thus, the flow equations now
simplify to

dP

d�
= −P̂[�] · χ̇pp · P̂[�],

dC

d�
= −Ĉ[�] · χ̇ph · Ĉ[�],

dD

d�
= 2D̂[�] · χ̇ph · D̂[�] − Ĉ[�] · χ̇ph · D̂[�]

− D̂[�] · χ̇ph · Ĉ[�], (A18)

where χ̇pp and χ̇ph are redefined in terms of the spin summa-
tion. The Matsubara sum can be calculated either analytically,
which scales as O(N4N4

b ) (with N the number of orbitals), or
numerically, as a summation over the fermionic frequencies
which scales proportional to O(N2N2

b Nf ) (with Nf the number
of frequencies and Nb the average number of bonds included)
with an additional factor of O(N3Nf ) for the calculation of the
Greens function, which can be cached and therefore is only
calculated once. The number of frequencies can be reduced
by employing a nonuniform Matsubara grid to approximately
102–103 for reaching an accuracy below 10−5 at T = 10−3,
rendering the numerical approach faster than the semianalyti-
cal approach. The propagators are given as

χ̇
bi,b j

ph(i, j) = 2
∑
ω>0

Re[G(ω)i, jS(ω) j+b j ,i+bi + G ↔ S], (A19)

χ̇
bi,b j

pp(i, j) = 2
∑
ω>0

Re[G(ω)i, jS(−ω)i+bi, j+b j + G ↔ S].

(A20)

The equation for the D channel can be simplified by a comple-
tion of the square in its flow equations, resulting in (defining
VD = D̂[�] − 1

2Ĉ[�])

dD

d�
= 2VDχ̇phVD + 1

2

d

d�
C, (A21)

greatly reducing the imbalance between the three channels.
With the before-defined Kronecker basis, the projections
simplify due to the cancellation of sums. This results in
Eqs. (A22)–(A24) (compare to [31,33]) introducing the dif-
ference set δd

i, j , which is one if the bond connecting i and j is

included in the truncation,

P̂[�]bi,b j

i, j = P
bi,b j

i, j + δd
i, j+b j

δd
i+bi, jC

( j+b j−i),(i+bi− j)
i, j

+ δd
i, jδ

d
i+bi, j+b j

(
D

( j−i),(i+bi− j−b j )
i, j+b j

+U
( j−i),(i+bi− j−b j )
i, j+b j

)
, (A22)

Ĉ[�]bi,b j

i, j = C
bi,b j

i, j + δd
i, j+b j

δd
i+bi, jP

( j+b j−i),(i+bi− j)
i, j

+ δd
i, jδ

d
i+bi, j+b j

(
D

( j−i),( j+b j−i−bi )
i,i+bi

+U
( j−i),( j+b j−i−bi )
i,i+bi

)
, (A23)

D̂[�]bi,b j

i, j = D
bi,b j

i, j + δd
i, j+b j

δd
i+bi, jP

( j+b j−i),( j−i−bi )
i,i+bi

+ δd
i, jδ

d
i+bi, j+b j

C
( j−i),( j+b j−i−bi )
i,i+bi

+ U
bi,b j

i, j . (A24)

APPENDIX B: DECOUPLING OF VERTEX FUNCTION

At the final scale, we obtain an effective interaction for
the low-lying energy degrees of freedom, with which we can
reformulate the Hamiltonian as

H = H0 − 1
4�(α, β; γ , δ)ψ̄αψ̄βψγ ψδ, (B1)

where we already went back to the Grassmann notation of
the fermionic operators and introduced the multi-indices α =
(i, σi ). A post-FRG mean-field theory can enable a differen-
tiation between competing orders, which are not separated
by the FRG. But as the two approaches are decoupled, the
resulting gap magnitudes depend on the stopping scale and the
results should therefore only be seen as a qualitative ordering
pattern. We now want to derive mean-field equations for the
charge and spin gap. We restrict the derivation to a general,
SU(2)-symmetric vertex and rewrite the effective interaction
in the channel decomposed form,

�(α, β; γ , δ) = Uα,β;γ ,δ + �C (α, β; γ , δ) + �D(α, β; γ , δ),

where we neglected the pairing channel as, for the cases
in which we applied the mean-field decoupling, it was sup-
pressed with respect to the other channels. Additionally, we
neglect the bare interaction, as in a flow to strong coupling its
influence is small and therefore negligible. In order to sum up
the spin indices, we again apply the relations in Eq. (A17).
C and D are the channels that we obtain as a result of our
FRG scheme. We start with the Grassmann path integral for
the partition function,

Z =
∫

D[ψ̄, ψ]eS0[ψ̄ψ]e− 1
4 ψ̄αψ̄β�C (α,β;γ ,δ)ψγ ψδ

× e− 1
4 ψ̄αψ̄β�D (α,β;γ ,δ)ψγ ψδ . (B2)

We now introduce a matrix notation for the vertex components
without spin degrees of freedom,

I ( j, k; i, l ) = I l,k
i, j .

Note that here we still have four spatial indices and no
truncation has been applied yet. We will now write out
the spin dependence explicitly using the relations from
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Eq. (A17),

Z =
∫

D[ψ̄, ψ]eS0[ψ̄,ψ]

× exp

[
−1

4
ψ̄σ ′

j ψ̄σ
k Cl,k

i, j ψ
σ ′
l ψσ

i + 1

4
ψ̄σ

j ψ̄σ ′
k Di,k

l, jψ
σ ′
l ψσ

i

]

× exp

[
−1

4
ψ̄σ ′

j ψ̄σ
k Dl,k

i, j ψ
σ ′
l ψσ

i + 1

4
ψ̄σ

j ψ̄σ ′
k Ci,k

l, j ψ
σ ′
l ψσ

i

]
.

In order to have one type of index ordering per chan-
nel, we commute the Grassmann variables and relabel the
indices. The commutation of the fields results in an addi-
tional minus sign. We define the fermionic bilinears for each
channel as

C ⇒ χσ,σ ′
i, j = ψ̄σ

i ψσ ′
j ,

D ⇒ ρσ,σ ′
i, j = ψ̄σ

i ψσ ′
j δσσ ′ .

Note that we have to use the physical channels in order to
correctly assign all contributions to the respective mean field.
Those physical channels are defined as [41]

Ml,k
i, j = �M ( j, k; i, l ) = −�C ( j, k; i, l ),

Kl,k
i, j = �K ( j, k; i, l ) = 2�D( j, k; i, l ) − �C ( j, k; i, l ).

Here, �M defines the magnetic channel; a divergence of it
thus describes transitions to a magnetic phase. �K describes
the charge channel, indicating charge ordering. The charge
channel no longer contains a spin divergence part, unlike the
D channel. Thus if both channels C and D diverge, the charge
channel does only contain the charge divergence, which leads
to an unambiguous decoupling.

Thereby, the full SU(2)-symmetric effective interaction is
given as

�l,k
i, j = −Ml,k

i, j + 1
2

(
Kl,k

i, j − Ml,k
i, j

)
.

Upon inserting and reordering of the terms, we obtain

Z =
∫

D[ψ̄, ψ]eS0[ψ̄,ψ] exp

[
3

4
Ml,k

i, j χ̄
σ,σ ′
i, j χσ,σ ′

k,l

]

× exp

[
−1

4
Kl,k

i, j ρ̄
σ ′
l, jρ

σ
k,i

]
.

For the decoupling, we now introduce two bosonic fields using
a Hubbard-Stratonovitch transformation [36]. In general, this
transformation reads (neglecting all occurring constants, as
we are only interested in the saddle point)

exp

[
−1

a
η̄mIm,nηn

]

=
∫

D[δ, δ̄] exp

[
1

q
δ̄mIm,nδn − b

q
δ̄mIm,nηn − b

q
δnIm,nη̄m

]
,

(B3)

with the restriction that b2

q = 1
a . We label the bosonic fields φ

with the subscript of their respective channel: K for the charge
channel and M for the magnetic channel. In addition to the
bosonic fields, we introduce the energy gap as the condensa-
tion term, defined by �I = I ◦ φI (◦ denotes a channel specific

contraction of the tensor with the two fields, which will be
specified later on, and the charge gap contains an additional
minus sign in its definition),

Z =
∫

D[ψ̄, ψ]D[φM, φ̄M]D[φK , φ̄K ]

× exp

[
S0[ψ̄, ψ]+1

2
φ̄M,σ,σ ′

k,l Ml,k
i, j χ

σ,σ ′
j,i − 1

2
φ̄K,σ

j,l Kl,k
i, j ρ

σ ′
k,i

]

× exp

[
1

2
φM,σ,σ ′

k,l Ml,k
i, j χ̄

σ,σ ′
j,i − 1

2
φK,σ

j,l Kl,k
i, j ρ̄

σ ′
k,i

+ 1

3
�̄M

j,iφ
M
k,l − �̄K

j,lφ
K
k,i

]
.

By introducing the Hubbard-Stratonovitch field, the fermionic
part of the action is reduced to a Gaussian and is thus
integrable. In the absence of magnetic fields, we as-
sume that φM = φM,↑↑ = −φM,↓↓, φK = φK,↑↑ = φK,↓↓, and
φM,↑↓ = φ̄M,↓↑. Additionally, the diagonal gaps must be self-
adjoint. To simplify the notation, we introduce the Nambu
spinor

�i = (ψ↑
i ψ

↓
i ), (B4)

with which we can rewrite the fermionic action in a compact
form (note the reordering of Grassmann variables performed
in order to have no minus signs occurring due to the integra-
tion),

Z f =
∫

D[ψ̄, ψ] exp

[
1

2
� j (iω − M ji )�̄i

]
,

with the matrix M defined as

M =
(

H + �K + �M �M,↑,↓

�̄M,↑,↓ H + �K − �M

)
. (B5)

Here we assumed that the magnetic gap will break the spin
rotational invariance. The gaps will be initialized as a super-
position of the leading eigenvectors of their respective relevant
channel.

We now carry out the functional integrals, i.e., a Gaussian
Grassmann integral, which results in (ignoring the prefactor
as it has no effect on the saddle-point equation)

Z f = det (iω − M) = exp {Tr[ln (iω − M)]}
= exp{Tr[ln(G−1)]}, (B6)

where we identified the Greens function G. The mean-field
equations are obtained by a saddle-point approximation, de-
fined as

δZ[φ]

δφ
= 0 ⇐⇒ δS[φ]

δφ
= 0. (B7)

The variation of each field needs to vanish individually, lead-
ing to a coupled set of self-consistent equations. We sketch
the derivation for the charge gap in the following (we suppress
spin indices for brevity):

0 = δS[φK , φ̄K , φM,σ,σ ′
, φ̄M,σ,σ ′

]

δφK
i j

(B8)

= Tr

(
Gmn

δG−1[φK , φ̄K , φM,σ,σ ′
, φ̄M,σ,σ ′

]

δφK
i j

)
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− (
�̄K

j,i + �K
j,i

)
(B9)

= −2�K
i j −

∑
ω

{
Ki,m

n, j [G(ω)↑,↑
nm + G(ω)↓,↓

nm ]
}
. (B10)

The spin indices are marking the spin block indices of the
Greens function. This equation can now be solved for the
charge gap,

�K
l j = −1

2
Kl,k

i, j

∑
ω

[G↑,↑
ik (ω) + G↓,↓

ik (ω)]. (B11)

The equation for �M follows analogously,

�M,σ,σ ′
i j = 3

2
Ml,k

i, j

∑
ω

[
Gσ,σ ′

lk (ω) + (−1)δσ,σ ′ G−σ,−σ ′
lk (ω)

]
.

(B12)
The channels that we obtain from the TU calculation have

the following index structure:

C(i, k; j, l ) → C(i, j + bj ; j, i + bi ), (B13)

D(i, k; l, j) → D(i, j + b j ; i + bi, j), (B14)

which leads to the following form of the physical channels:

Mbi,bk
i,k = − 3

2Cbi,bk
i,k , (B15)

Kbi,bk
i,k = 2Dbi,bk

i,k − Cbi,bk
i,k . (B16)

We now return to the real-space TUFRG notation that we
introduced earlier, and thus the index ordering is changed.
Using the eigenvector decomposition, which we obtain as a
result of our FRG flow, we reconstruct the approximate vertex
as

K ( j, i + bi; j + b j, i) = K
bi,b j

i, j =
∑

k

λk |k〉bi
i 〈k|b j

j , (B17)

M(i + bi, j; j + b j, i) = C
bi,b j

i, j = −
∑

c

λc |c〉bi
i 〈c|b j

j . (B18)

From now on, this sum will be truncated to a few of the
largest eigenvalue-eigenvector combinations indicated by a
tilde. Here we still need to sum out the inner spin index as well
as the Matsubara sum. As the vertex is frequency independent,
we can solve the Matsubara sum by complex integration,

∑
ω

Gkl =
∑

n

Uknn f (λn)U ∗
ln = n f (M)kl . (B19)

The sum over all leading eigenvectors gives the effective
channels resulting in the following set of self-consistent

FIG. 5. Gap magnitudes of SDW and CDW in the center Pen-
rose model at μ = 2.0, U = 1.0, U ′ = 1.015, and T = 10−3 without
fixed particle number. It compares well to the gap predicted by the
fixed particle number calculation. The calculated gap magnitudes
are shown in a red-blue color scheme for the spin gap, which is
equivalent to the magnetization. In the violet-lime color scheme,
the charge gap is shown. The two faces have no spatial overlap of
magnitudes above 10−3 max(�).

equations:

�M
i,i+bi

= 3
2 M̃

bib j

i j [n f (M)↑,↑ − n f (M)↓,↓] j, j+b j , (B20)

�M
i,i+bi

= 3
2 M̃

bib j

i j [n f (M)↑,↓ + n f (M)↓,↑] j, j+b j , (B21)

�K
i,i+bi

= − 1
2 K̃

bib j

i j [n f (M)↑,↑ + n f (M)↓,↓] j, j+b j . (B22)

If only a single channel is diverging, we can reduce the
number of mean fields to obtain a more efficient description.
In practice, we keep the particle number constant during the
self-consistency iteration by adding an appropriate, adaptive
chemical potential. Additionally, we add and subtract the
“zero gap charge gap” and absorb one part into this constant;
the other part is used to redefine the charge gap,

�̃K
i,i+bi

= �K
i,i+bi

− �K
i,i+bi

|�K =0

= − 1
2 K̃

bib j

i j {n f (M)↑,↑ + n f (M)↓,↓ − δ0,b j [n f (H )↑,↑

+ n f (H )↓,↓]} j, j+b j , (B23)

in order to make its value vanish if no divergence is encoun-
tered in the physical charge channel. The fixing of the particle
number introduces convergence issues which are addressed by
a mixing parameter [see Eq. (B24)],

�n+1 = α�n + (1 − α)�n−1. (B24)

Additionally, the fixing of the particle number introduces in-
direct coupling of the two regions, as particles cannot simply
be pushed out of the one region. They then flow into the
other region, creating a charge displacement there. We always
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FIG. 6. Average on-site and nearest-neighbor interaction de-
pending on the distance defined by the real-space positions to the
center in the vertex-type Penrose model.

performed both simulations, once for fixed particle number
and once for nonfixed particle number, to check convergence.
The noncoupled MF/FRG leads to very large gap magnitudes,
which introduce additional convergence issues. This is re-
solved by a rescaling of the vertices by a factor; we used 1/10.
As the resulting gap magnitudes are only qualitative, this does
not introduce a bias. In Fig. 5, we show the gap magnitudes
for the non-particle-number fixed case of the coexistence of
magnetic and charge ordering in the center Penrose model.

APPENDIX C: INTERACTION ENVELOPE

For the interaction envelope, we apply

Uii → U sc
ii = Uii tanh[10 × (dmax − di )

2], (C1)

as the scaling factor for the interaction (di is the distance
of site i to the center of the tiling and dmax = maxi di). For
the nearest-neighbor interactions, this factor is applied too.
To keep the interaction symmetric and C5 invariant, we need
to symmetrize the scaling factor [see Eq. (C2)], thereby, we
introduce a slight bias as explained below.

U sc
i j = Ui j

2
{tanh[10 × (dmax − di )

2]

+ tanh[10 × (dmax − d j )
2]}. (C2)

FIG. 8. Phase diagram of the vertex Penrose model employing
Eq. (C2). We find a SDW (star marker) and a CDW (triangular
marker) phase. The critical scales are given by the color code.

This creates a region of higher U ′
/U ratio than in the bulk. This

slight deviation does not seem to have any influences as each
interaction term is individually lower. The effective lattice size
is, of course, reduced due to the application of the screening.
The distance dependence of the screened on-site and nearest-
neighbor interaction is shown in Fig. 6.

APPENDIX D: NONINTERACTING DENSITY OF STATES

The noninteracting density of states (DoS) has been cal-
culated for the nine-times substituted lattice. We used the
kernel polynomial approximation method. The DoS was used
in order to choose the parameters for the simulations. We
focus on regions with high degeneracy or low slope of the
dispersion relation in the diagonal basis of the Hamiltonian;
both lead to strong peaks in the DoS (see Fig. 7).

APPENDIX E: VERTEX MODEL AT HALF FILLING

The phase diagram for the vertex model with the employed
envelope, discussed in the main text, is shown in Fig. 8.

FIG. 7. Noninteracting DoS for the three types of Penrose models used. Left: the vertex-type Penrose model with 21 106 sites with the
δ-like peak at μ = 0. Middle: the center-type model with hoppings defined using the graph; the main peak is at μ = 2.0. Right: the center-type
model with exponential decaying hoppings, with three main peaks. In both center-type models, the lattice contains 20 800 sites.
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FIG. 9. The upper left plot shows the charge order parameter at U ′ = 1.5 and U = 1. The lower left plot visualizes the spin order parameter
(or magnetization pattern) at U ′ = 0.5 and U = 2.0. The middle plot shows the critical scales depending on the nearest-neighbor interaction
for U = 3.0 in the vicinity of the phase transition, to highlight the suppression of the critical scale upon approaching the phase transition. The
right plot shows the phase diagram of the vertex model with a SDW (star marker) and a CDW (triangular marker) phase; the phase diagrams
for the pure case and the one employing an envelope differ only very slightly.

For a pure interaction, the main results are summarized in
Fig. 9. We find a charge density wave phase at dominant
nearest-neighbor interactions (U ′) and a spin density wave
phase at dominant on-site interactions. The latter is expected
as in the limit of weak U ′, we should recover the known
antiferromagnet for the vertex model. The SDW phase has
its main weight at the boundaries, which is a consequence
of the open boundary conditions and can be understood as
follows. At the boundaries, the local kinetic energy bandwidth

is reduced, which results in a larger U/WD ratio, which in turn
leads to faster divergences of diagrammatic resummations
at the boundaries. The subleading eigenvectors of the SDW
divergence also show this bulk behavior. Upon decreasing U ′,
this effect is also vanishing, as it should be. The CDW phase
loses weight towards the boundaries and thus is seen as a
bulk phase. Due to the reduced boundary weight, it could be
possible that a coexisting boundary phase emerges at lower
critical scales or lower temperatures. However, we did not

FIG. 10. Phase diagram of the center model at different chemical potentials: μ = 1.9 (upper left), μ = 2.0 (upper middle), μ = 2.1 (upper
right), μ = 2.3 (lower left), μ = 2.35 (lower middle), and μ = 2.4 (lower right). U and U ′ are varied at T = 10−3; nearest neighbors are
included in the calculation.
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FIG. 11. Ordering predictions for some chosen data points at each chemical potential: μ = 1.9 (upper left), μ = 2.0 (upper middle),
μ = 2.1 (upper right), μ = 2.3 (lower left), μ = 2.35 (lower middle), and μ = 2.4 (lower right), from FRG plus postproduction mean-field
theory at chosen data points. U and U ′ are varied at T = 10−3; nearest neighbors are included in the calculation.

find a phase coexistence. At the transition between CDW and
SDW, we find a mutual suppression of the phases resulting
from their nonzero overlap in space.

This behavior can be understood as follows. In a spin chan-
nel (SDW) antiferromagnetic divergence, the charge channel
(CDW) has an eigenvalue, describing the strength of the order,
half as large as the one of the spin channel, which already
follows from the RPA. This eigenvalue is positive in our sign
convention. The diverging eigenvalue of the CDW-RPA itself
is negative, and thus the two will suppress each other in the
vertex reconstruction. This partial cancellation is the source
of the reduced critical scales and thus reduced transition tem-
peratures. As soon as the CDW divergence is dominant, the
critical scales grow rapidly again, as shown in the middle plot
in Fig. 9.

FIG. 12. Critical scales depending on the interaction strength in
the center model with exponential hoppings at T = 10−3 including
all sites with a distance � 3a in the calculation.

FIG. 13. Orderings at varying chemical potentials and interaction
strengths, where the left column show orderings for U = 0.3 and the
right one shows orderings for U = 3.0, and the chemical potential
is shown from the lowest (μ = 0.83) (top row) to the highest (μ =
1.23) (bottom row), for the physical center model. Calculations are
performed at T = 10−3 using a frequency cutoff including all sites
with a distance � 3a in the calculation. The color map is diverging,
and thus blue and red mark different signs; we normalized the gap to
±1 and applied a logarithmic scale.
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APPENDIX F: PHASE DIAGRAM OF THE CENTER
MODEL AT DIFFERENT FILLINGS

In Figs. 10 and 11, the dependence of the ordering and the
phase on μ, U , and U ′ is summarized for the center model. We
find that nonlocalized divergences only occur in the vicinity of
the main divergence. For all data sets, we found more than
a single diverging eigenvalue, and thus more than a single
channel mean-field decoupling is performed to extract the
ordering information.

APPENDIX G: PHASE DIAGRAM OF EXPONENTIAL
HOPPING CENTER MODEL AT DIFFERENT FILLINGS

For the exponential hopping center model, we find the
interaction dependence of the critical scale as summarized in
Fig. 12. A clear classification in standard categories such as
antiferromagnetism and ferromagnetism is not possible, and
thus we just state that the SDW indicates a magnetic ordering.
For each filling, we display examples of the SDW ordering at
the lowest and highest interaction strength in Fig. 13.
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