001     905388
005     20220318173147.0
024 7 _ |a 10.1021/acs.jmedchem.1c00632
|2 doi
024 7 _ |a 0022-2623
|2 ISSN
024 7 _ |a 0095-9065
|2 ISSN
024 7 _ |a 1520-4804
|2 ISSN
024 7 _ |a 1943-2992
|2 ISSN
024 7 _ |a altmetric:116342904
|2 altmetric
024 7 _ |a pmid:34739758
|2 pmid
024 7 _ |a WOS:000754726000008
|2 WOS
037 _ _ |a FZJ-2022-00640
082 _ _ |a 610
100 1 _ |a Bocharov, Eduard V.
|0 0000-0002-3635-1609
|b 0
245 _ _ |a All - d - Enantiomeric Peptide D3 Designed for Alzheimer’s Disease Treatment Dynamically Interacts with Membrane-Bound Amyloid-β Precursors
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642441047_30509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden
520 _ _ |a Alzheimer’s disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-β peptide (Aβ) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aβ aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aβ monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aβ sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aβ conversion into β-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 1
700 1 _ |a Urban, Anatoly S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Okhrimenko, Ivan S.
|0 0000-0002-1053-2778
|b 3
700 1 _ |a Volynsky, Pavel E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nadezhdin, Kirill D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bocharova, Olga V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kornilov, Daniil A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zagryadskaya, Yuliya A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kamynina, Anna V.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kuzmichev, Pavel K.
|0 0000-0001-5322-3580
|b 10
700 1 _ |a Kutzsche, Janine
|0 P:(DE-Juel1)159137
|b 11
|u fzj
700 1 _ |a Bolakhrif, Najoua
|0 P:(DE-Juel1)180739
|b 12
|u fzj
700 1 _ |a Müller-Schiffmann, Andreas
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Dencher, Norbert A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Arseniev, Alexander S.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Efremov, Roman G.
|0 0000-0002-5474-4721
|b 16
700 1 _ |a Gordeliy, Valentin I.
|0 P:(DE-Juel1)131964
|b 17
|e Corresponding author
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 18
|e Corresponding author
773 _ _ |a 10.1021/acs.jmedchem.1c00632
|g Vol. 64, no. 22, p. 16464 - 16479
|0 PERI:(DE-600)1491411-6
|n 22
|p 16464 - 16479
|t Journal of medicinal chemistry
|v 64
|y 2021
|x 0022-2623
856 4 _ |u https://juser.fz-juelich.de/record/905388/files/acs.jmedchem.1c00632.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:905388
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)159137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)180739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MED CHEM : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MED CHEM : 2019
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21