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Introduction Methods

» Behavioral variant frontotemporal dementia (bvFTD)
[1,2]

« detrimental changes In personality and behavior
* short survival
* rapid cognitive and functional decline

» Patients are often (l.e. up to 50%) misdiagnhosed as
having a psychiatric illness 3]
-> consideration of family history and different

neuroimaging modalities necessary (e.g. FDG-PET, * Realigned & unwarped
MRI) [1,4]  Co-registered to the

structural image

resting-state fMRI and

Sample *!
‘ neuropsychological test

52 bvFTD patients (mean age = 61.5 == 10.0 years; 14 female)
22 healthy controls (HC; mean age = 63.6 = 11.9 years; 13 female) data *?

. Functional alterations
Eligy Wielsr Dl driven by structural
(GMD) / atrophy

Preprocessing (SPM12) changes?

First-level analysis

Second-level analysis
- REST toolbox version 1.8 [13]

> Struc_tural alterati_ons (atrophy) In later stag_es an_d . Soatial ot > regressed out first principal - SPM12: flexible factorial design with
functional alterations (glucose hypometabolism) in patially normalized to components for WM & CSF group (patient/HC) as factor and age and
earlier stages visible 5.6] MNI space | signals and 24 motion gender as covariates
- accompanied by changes on neurotransmitter level ' SmOOtIhe_d bi(’ 4 GT“‘Q_’Sr:a; parameters - JuSpace toolbox [14]: spatial correlation age and
. . . . convolution kKernel wit : - * gender
of fMRI data with neurotransmitter maps *3
» Neurotransmitter alterations in frontotemporal dementia e fullewidth at half fractional Amplitude of Low corrected

(FTD): deficits in dopaminergic, serotonergic, cholinergic, Frequency Fluctuations (ALFF)  ~ correlation with neuropsychological

. . . maximum
glutamatergic, and GABAergic neurotransmitter systems wer sithin low — frequency range (0,01 — 0.08 Ho) test data | o
7.8] _P e~ - MENGA toolbox [15]: spatial correlation with

total power
» Neurotransmitter alterations might be related to 1 | | o MRNA gene expression profile maps
: .. e g er s *1 German FTLD consortium [11] & Max-Planck-Institute Leipzig database [12]
Sym ptOmS (eg GABAerglc deficit and dlSlnh|b|t|On) [9,10] *2 Mini-Mental State Exam (MMSE), Verbal Fluency, (VF) (animals), Boston Naming Test (BNT), Trail Making Test B (TMT-B), Apathy Evaluation Scale (AES)

- : - (clinician-rated), Frontal Systems Behavior Scale (FrSBe), and Clinical Dementia Rating-FTLD scale-modified (CDR-FTLD)
» Aim: examine the role of several neurotransmitter *3 serotonin 1a (5HT1a) receptor, serotonin 1b (5HT1b) receptor, serotonin 2a (5HT2a) receptor, dopamine D1 receptor, dopamine D2 receptor, dopamine
Systems INn the pathology of bvFTD transporter (DAT), Fluorodopa (FDOPA), y-Aminobutyric acid type A (GABAa) receptors, y-opioid (MU) receptors, noradrenaline transporter (NAT), and
serotonin transporter (SERT
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Figure 1. Thresholded fALFF t-map for HC>bvFTD. Permutation-based threshold at cluster- & o4 for NAT and/or D2 were significant at p<.05
level p<.05 and voxel-level p<.001. N e and are displayed incl. bootstrapped 95 %
5 confidence interval.
i e o —— D2 rho=0.44
-1.0 === NAT rho=0.40
Correlation of fALFF with spatial distribution ROC curve for HC vs. bvFTD o 0 i
A 06 | | | of r‘leurot‘ranSI‘nitterI systPTms | B (FALFF-neurotransmitter correlations) MMSE Score

Correlation of fALFF with
MRNA gene expression maps
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MRNA gene expression maps
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Figure 2. Correlation with the spatial distribution of neurotransmitter systems. Correlation of fALFF (A) and GMD (C) g 000 line). Correlation coefficients significantly
with spatial distribution of neurotransmitter systems incl. 95 % confidence interval (error bars). ROC curves (HC vs. ir ~0.25 different from O at p<.05 are marked with *.
FTD) for significant fALFF-neurotransmitter correlations (B). Statistically significant correlations at p<.05 are marked ~0.50
Wlth *. 5HT1b 5HT2a D2 GABAa NAT

Neurotransmitter

Discussion
» Compared to HC, patients displayed significantly reduced fALFF in fronto-|» fALFF-neurotransmitter correlations associated with cognitive symptoms
temporal and fronto-parietal regions (Figure 1) of bvFTD for D2 and NAT (Figure 3A-C)
- less fALFF reduction in high density neurotransmitter areas (i.e. less

» fALFF alterations co-localized with the distribution of serotonin (5HT1b, 5HTZ2a),

dopamine (D2), and GABAa receptors, and the noradrenaline transporter (NAT) negative correlation coefficients) associated with better performance

(Figure 2A) -> performance in line with previous studies comparing HC and FTD patients [16,17]

— patients showed reduced fALFF signal compared to HC in high density > fALFF alterations also co-localized with mRNA expression of genes encoding
neurotransmitter areas (i.e. negative correlation coefficient) the respective receptors and transporters (Figure 4A)

- neurotransmitter deficits largely in line with literature (7] > 5HT1b, 5HT2a, and GABAa showed negative correlations for both analyses,

» fALFF and GMD displayed distinct profiles for the neurotransmitter correlations whereas D2 and_ NAT dls_p_layed Opposite correlations n the analy;es
(Figure 2A&C) - MENGA correlation coefficients small and autocorrelation very variable

> functional (fALFF) alterations unlikely to be driven by structural changes (atrophy) — more research needea
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