000905446 001__ 905446
000905446 005__ 20240708132712.0
000905446 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2021.11.051
000905446 0247_ $$2ISSN$$a0955-2219
000905446 0247_ $$2ISSN$$a1873-619X
000905446 0247_ $$2Handle$$a2128/30359
000905446 0247_ $$2WOS$$aWOS:000742850400006
000905446 037__ $$aFZJ-2022-00687
000905446 082__ $$a660
000905446 1001_ $$00000-0002-2431-3525$$aAbaza, A.$$b0$$eFirst author
000905446 245__ $$aFracture properties of porous yttria-stabilized zirconia under micro-compression testing
000905446 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000905446 3367_ $$2DRIVER$$aarticle
000905446 3367_ $$2DataCite$$aOutput Types/Journal article
000905446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642514651_6597
000905446 3367_ $$2BibTeX$$aARTICLE
000905446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905446 3367_ $$00$$2EndNote$$aJournal Article
000905446 520__ $$aMicro-compression tests were carried out on pillars of 60 μm in diameter, milled by plasma focused ion beam in porous Yttria-Stabilized Zirconia (YSZ) pellets. The fracture properties were determined over a wide range of porosities (33 %–63 %) for 8YSZ and at a given pore volume fraction of 63 % for 3YSZ. The mechanical properties determined from testing were reproducible thanks to the homogeneity of the microstructures. The Young’s modulus was estimated as a function of the porosity from the unloading curve of tests stopped before fracture. The experiments conducted until the total rupture allowed measuring the compressive fracture strength, which was found to decrease when increasing the porosity. Specimen tested and unloaded just before the total fracture were cross-sectioned by focused ion beam - scanning electron microscope. A transition was detected from a brittle behavior, with macro-cracks parallel to the direction of solicitation, to a diffuse damage with micro-cracks, when increasing the porosity.
000905446 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000905446 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000905446 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905446 7001_ $$0P:(DE-HGF)0$$aLaurencin, J.$$b1
000905446 7001_ $$0P:(DE-HGF)0$$aNakajo, A.$$b2
000905446 7001_ $$0P:(DE-HGF)0$$aHubert, M.$$b3
000905446 7001_ $$0P:(DE-HGF)0$$aDavid, T.$$b4
000905446 7001_ $$00000-0003-0662-7771$$aMonaco, F.$$b5
000905446 7001_ $$0P:(DE-Juel1)138081$$aLenser, C.$$b6
000905446 7001_ $$00000-0002-4553-1206$$aMeille, S.$$b7$$eCorresponding author
000905446 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2021.11.051$$gVol. 42, no. 4, p. 1656 - 1669$$n4$$p1656 - 1669$$tJournal of the European Ceramic Society$$v42$$x0955-2219$$y2022
000905446 8564_ $$uhttps://juser.fz-juelich.de/record/905446/files/Article.pdf$$yPublished on 2021-11-26. Available in OpenAccess from 2023-11-26.
000905446 909CO $$ooai:juser.fz-juelich.de:905446$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905446 9101_ $$0I:(DE-HGF)0$$60000-0002-2431-3525$$aExternal Institute$$b0$$kExtern
000905446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000905446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000905446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000905446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000905446 9101_ $$0I:(DE-HGF)0$$60000-0003-0662-7771$$aExternal Institute$$b5$$kExtern
000905446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b6$$kFZJ
000905446 9101_ $$0I:(DE-HGF)0$$60000-0002-4553-1206$$aExternal Institute$$b7$$kExtern
000905446 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000905446 9141_ $$y2022
000905446 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000905446 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000905446 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905446 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000905446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2021$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000905446 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2021$$d2022-11-22
000905446 920__ $$lyes
000905446 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000905446 9801_ $$aFullTexts
000905446 980__ $$ajournal
000905446 980__ $$aVDB
000905446 980__ $$aUNRESTRICTED
000905446 980__ $$aI:(DE-Juel1)IEK-1-20101013
000905446 981__ $$aI:(DE-Juel1)IMD-2-20101013