001     905446
005     20240708132712.0
024 7 _ |a 10.1016/j.jeurceramsoc.2021.11.051
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 2128/30359
|2 Handle
024 7 _ |a WOS:000742850400006
|2 WOS
037 _ _ |a FZJ-2022-00687
082 _ _ |a 660
100 1 _ |a Abaza, A.
|0 0000-0002-2431-3525
|b 0
|e First author
245 _ _ |a Fracture properties of porous yttria-stabilized zirconia under micro-compression testing
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642514651_6597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Micro-compression tests were carried out on pillars of 60 μm in diameter, milled by plasma focused ion beam in porous Yttria-Stabilized Zirconia (YSZ) pellets. The fracture properties were determined over a wide range of porosities (33 %–63 %) for 8YSZ and at a given pore volume fraction of 63 % for 3YSZ. The mechanical properties determined from testing were reproducible thanks to the homogeneity of the microstructures. The Young’s modulus was estimated as a function of the porosity from the unloading curve of tests stopped before fracture. The experiments conducted until the total rupture allowed measuring the compressive fracture strength, which was found to decrease when increasing the porosity. Specimen tested and unloaded just before the total fracture were cross-sectioned by focused ion beam - scanning electron microscope. A transition was detected from a brittle behavior, with macro-cracks parallel to the direction of solicitation, to a diffuse damage with micro-cracks, when increasing the porosity.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Laurencin, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nakajo, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hubert, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a David, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Monaco, F.
|0 0000-0003-0662-7771
|b 5
700 1 _ |a Lenser, C.
|0 P:(DE-Juel1)138081
|b 6
700 1 _ |a Meille, S.
|0 0000-0002-4553-1206
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.jeurceramsoc.2021.11.051
|g Vol. 42, no. 4, p. 1656 - 1669
|0 PERI:(DE-600)2013983-4
|n 4
|p 1656 - 1669
|t Journal of the European Ceramic Society
|v 42
|y 2022
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/905446/files/Article.pdf
|y Published on 2021-11-26. Available in OpenAccess from 2023-11-26.
909 C O |o oai:juser.fz-juelich.de:905446
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-2431-3525
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0003-0662-7771
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138081
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0002-4553-1206
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EUR CERAM SOC : 2021
|d 2022-11-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21