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Abstract: Increasingly volatile electricity prices make simultaneous scheduling optimization for produc-
tion processes and their energy supply systems desirable. Simultaneous scheduling needs to account for
both process dynamics and binary on/off-decisions in the energy system and thus leads to challenging
mixed-integer dynamic optimization problems. In this contribution, we propose an efficient scheduling
formulation that consists of three parts: a linear scale-bridging model for the closed-loop process output
dynamics, a data-driven model for the process energy demand, and a mixed-integer linear model for the
energy system. Process dynamics are discretized by collocation yielding a mixed-integer linear program-
ming (MILP) formulation. We apply the scheduling method to a single-product reactor, with 5.6 %
economic improvement compared to steady-state operation, and a multi-product reactor, with 5.2 %
improvement compared to sequential scheduling. While capturing 85 % and 96 % of the improvement
realized by a nonlinear optimization, the MILP formulation achieves optimization runtimes sufficiently
fast for real-time scheduling.
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1 INTRODUCTION 2

1 Introduction
Current efforts to reduce greenhouse gas emissions increase the share of renewable electricity production in
many countries. Due to the intermittent nature of renewable electricity production, stronger volatility in
electricity prices or even electricity availability is expected (Merkert et al., 2015). This price volatility may
offer economic benefits to industrial processes that can dynamically adapt their operation and thus their
power consumption in so-called demand response (DR) (Mitsos et al., 2018). Ideally, demand response
reacts to imbalances of electricity demand and supply and therefore also stabilizes the electricity grid
(Zhang and Grossmann, 2016).

A promising way to achieve DR is to consider volatile prices in scheduling optimization (Merkert
et al., 2015) that determines the process operation for a time horizon in the order of one day (Baldea
and Harjunkoski, 2014; Daoutidis et al., 2018; Seborg et al., 2010). However, industrial processes are
often not supplied directly by the electricity grid but by a local on-site multi-energy system. The local
multi-energy system supplies all energy demanded by the process, e.g., heating, cooling, or electricity,
and exchanges electricity with the grid (Voll et al., 2013). Operating local energy systems is a complex
task as these systems typically consist of multiple redundant units with non-linear efficiency curves
and minimum part-load constraints leading to discrete on/off-decisions (Voll et al., 2013). Thus, the
electricity exchange between the energy system and the grid is not directly proportional to the process
energy demand. Consequently, optimal DR scheduling must consider processes and their energy systems
simultaneously. Moreover, such a simultaneous scheduling can improve the efficiency of energy system
operation by shifting process energy demand in time (Bahl et al., 2017). Still, scheduling is usually carried
out sequentially: The process schedule is optimized first and only then the energy system operation is
optimized (Agha et al., 2010; Leenders et al., 2019).

The simultaneous scheduling of processes and their energy systems leads to computationally challeng-
ing problems. Process scheduling can already be a very demanding task on its own if nonlinear process
dynamics need to be considered (Flores-Tlacuahuac and Grossmann, 2010); therefore, considering dy-
namics is a major research topic in process systems engineering referred to as integration of scheduling
and control (Baldea and Harjunkoski, 2014; Daoutidis et al., 2018; Harjunkoski et al., 2009; Engell and
Harjunkoski, 2012; Beal et al., 2017; Flores-Tlacuahuac and Grossmann, 2006). For DR problems, pro-
cess dynamics are often scheduling-relevant (Mitsos et al., 2018; Baldea and Harjunkoski, 2014; Daoutidis
et al., 2018; Caspari et al., 2019; Otashu and Baldea, 2019) because the time to drive the process from
one steady state to another steady state is often in the same order of magnitude as the electricity-price
time steps.
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Fig. 1. Volatile grid electricity prices call for a simultaneous scheduling of production processes and
their local energy supply systems. While energy systems introduce integer decision variables, processes
often exhibit scheduling-relevant dynamics. Simultaneous scheduling thus results in computationally
challenging mixed-integer dynamic optimization (MIDO) problems.

The desired simultaneous scheduling of processes and their energy systems is especially challenging
due to the simultaneous presence of process dynamics and discrete on/off-decisions in the energy sys-
tem (Figure 1). Because of the discrete decisions, standalone energy system optimization problems are
preferably formulated as mixed-inter linear programs (MILPs) (Voll et al., 2013; Risbeck et al., 2017;
Mitra et al., 2013; Carrion and Arroyo, 2006; Sass et al., 2020). A MILP formulation is usually applicable
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because: (i) Nonlinear part-load efficiencies can be approximated reasonably well using piece-wise affine
functions (Sass et al., 2020), and (ii) the dynamics of the energy system units are negligible or can be
captured using ramping constraints (Sass and Mitsos, 2019).

As process dynamics are often scheduling-relevant, the simultaneous scheduling needs to be integrated
with control. Even though conceptually, all approaches for the integration of scheduling and control can
be used, the on/off-decisions significantly increase the computational complexity. However, scheduling
must be performed online. Harjunkoski et al. (2014) state that generally optimization run times should
be between 5 and 20 minutes.

In this work, we present a formulation for simultaneous scheduling of processes and their energy
systems that aims at real-time-applicable runtimes. We rely on two promising approaches from the in-
tegration of process scheduling and control: (i) dynamic scale-bridging models (Du et al., 2015; Baldea
et al., 2015), where the controlled process output is forced to follow a linear differential equation and (ii)
dynamic data-driven models (Mitsos et al., 2018; Pattison et al., 2016; Kelley et al., 2018a,b). Specifi-
cally, our formulation consists of three parts: 1 a scale-bridging model considering the dynamics of the
production process, 2 a piece-wise affine dynamic data-driven model for the energy demand of the pro-
cess, and 3 a MILP energy system model with piece-wise affine approximations of nonlinear component
efficiency curves. We discretize the linear differential equations in time using a high-order collocation
scheme to receive linear constraints (Biegler, 2010). Consequently, we achieve an MILP formulation for
the entire scheduling problem.

A preliminary version of our approach has been presented in a conference contribution (Baader et al.,
2020) where we considered DR for a building energy system. In the present contribution, we describe
our method in more detail and apply it to a chemical production system, i.e., a continuous-stirred-
tank-reactor (CSTR) cooled by three compression chillers. Furthermore, the new method is explicitly
compared against a standard sequential scheduling approach from industrial practice (Agha et al., 2010).
The remainder of this paper is structured as follows: In section 2, the method is described in detail; in
section 3, a first case study considering a multi-product scenario is performed; in section 4, a second case
study considering a single-product scenario is performed, and section 5 concludes the work.

2 Method
In this section, we present our method for simultaneous dynamic scheduling of production processes and
their energy systems. We refer to our method as simultaneous dynamic scheduling. The core of simul-
taneous dynamic scheduling is an efficient scheduling model consisting of three parts: 1 the production
process, 2 the energy demand, and 3 the energy system (Figure 2). Model 1 determines the controlled
process output ycv, e.g., the concentration in a reactor. We use a scale-bridging model (SBM) proposed
by Baldea and co-workers (Du et al., 2015; Baldea et al., 2015) that describes a linear closed-loop re-
sponse and represents the slow scheduling-relevant dynamics only. A linear SBM can be incorporated in
scheduling optimization much more efficiently than a nonlinear full-order process model. The SBM relies
on an underlying control to enforce the desired linear closed-loop response. The closed-loop response
describes the evolution of the controlled variable ycv and its time derivatives depending on the set-point
wSP :

ycv +

r∑
i=1

τi
diycv
dti

= wSP (1)

In equation 1, r is the order of the SBM and τi are time constants. We discuss both order and time
constants in section 2.1. To linearize the closed-loop response, we propose to place a set-point filter
(Corriou, 2018) in front of the controlled plant (Figure 2). This set-point filter converts the piece-wise
constant set-point wSP given by the scheduling optimization to a smooth filtered set-point wSP,fil that
can be tracked by the underlying process control such that ycv ≈ wSP,fil. In essence, we assume that the
linear dynamics of the set-point filter can model the process output dynamics for the scheduling-relevant
time-scale. Instead of the combination of set-point filter and tracking control previous publications used
exact input-output feedback linearization (Du et al., 2015; Daoutidis and Kravaris, 1992; Corriou, 2018)
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or scheduling-oriented model predictive control (SO-MPC) (Baldea et al., 2015). The proposed set-point
filter increases the flexibility of the scale-bridging approach as it allows to use non-model-based tracking
controls, e.g., PID-control (Corriou, 2018), as well.

The scale-bridging equation 1 is more than an approximation: Whenever the actual value of ycv
deviates from the closed-loop response described by equation 1 the underlying control acts to bring
the controlled variable ycv back to the desired closed-loop trajectory. Consequently, deviations of the
controlled variable from its optimized trajectories are kept small. Note that, in this paper, we only
discuss the case of a single controlled variable ycv. Still, the scale-bridging approach is applicable to
multi-input, multi-output processes, as discussed in Du et al. (2015). Consequently, our method can be
extend to multi-input, multi-output processes.

Controlled plant

Filtered set-
point wSP,fil

Set-point wSP

Scheduling optimization

min
∫ tf
t0

(-Product revenue(t) + Energy costs(t)) dt

s.t. Set-point
wSP

Energy demand
model

Production process
model 1

2
Process energy
demand yed

Controlled
variable ycv

Energy
costs yecEnergy system

model 3

Energy
costs yec

Controlled
variable ycv

Fig. 2. Proposed simultaneous scheduling of processes and their energy systems based on our scheduling
model consisting of three parts. A set-point filter converts the optimized piece-wise constant set-point
wSP to a smooth filtered set-point wSP,fil, which defines the desired linear closed-loop process behavior.

Model 2 is a dynamic data-driven model (Mitsos et al., 2018) that determines the process energy
demand yed based on the current state of the production process, i.e., the controlled variable ycv and
its time derivatives. In principle, a wide range of data-driven models derived from recorded data, or
mechanistic models can be used here. Examples of data-driven models being applied successfully in
dynamic demand response optimization can be found in Pattison et al. (2016); Kelley et al. (2018a,b);
Tsay and Baldea (2019). Our energy demand model 2 can be dynamic and mixed-integer but must
be linear as we aim for an MILP formulation. In contrast to the controlled process output ycv, there
is no correction for deviations between the actual process energy demand yed and the model prediction.
Instead, we assume that such deviations are compensated by the energy system, which is reasonable if
(i) the energy system can react significantly faster than the process and (ii) the energy system has spare
capacity larger than the maximum error of the data-driven model.

Model 3 is the energy system model that determines the energy costs depending on the energy
demand. The structure of the energy system is modeled by energy balances that connect the energy
system components with demands. Moreover, the efficiency of individual energy system components
is modeled as a function of the part-load fraction. Thus, the required input power Pc,in of an energy
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system component c is a nonlinear function of the desired output power Pc,out (Sass et al., 2020). To
obtain a MILP formulation, we follow the established approach of modeling part-load efficiency curves as
piece-wise affine functions (Voll et al., 2013). In general, piece-wise affine efficiency curves require binary
variables. Binary variables increase the computational burden; however, they can be avoided if the input
power is a convex function of the output power (Carrion and Arroyo, 2006), which is the case for many
energy system components of practical relevance (Voll et al., 2013).

By combining the three models 1 - 3 , we receive a linear differential algebraic equation system
(DAE) containing integers:

dx

dt
= f(x,y, z,wSP ) = Ax + By + Cz + DwSP (2)

0 = g(x,y, z,wSP ) = Ex + Fy + Gz + HwSP (3)

where x are the differential states, y are continuous variables, z are discrete variables, wSP are set-points,
t is time, f and g are functions that are linear in x,y, z,wSP , and A −H are matrices. Note that all
variables are functions of time although not stated explicitly to improve readability.

We choose a discrete-time MILP formulation for our simultaneous scheduling problem because for
variable electricity prices, discrete-time formulations usually perform better than continuous-time formu-
lations (Castro et al., 2009), as the electricity markets imposes a discrete time structures, e.g., hourly
constant prices. As our model consists of linear differential equations, time discretization with collocation
in discrete time leads to linear constraints (Biegler, 2010).

In the following, we discuss the scale-bridging model parameters (section 2.1) and the scheduling
optimization problem (section 2.2).

2.1 Scale-bridging model parameters
For the scale-bridging model 1 , we have to determine the order r and the time constants τi from equation
1, as well as upper and lower bounds for the set-point wmaxSP , wminSP , respectively. The order r reflects
how many stages of inertia a change in the manipulated variable u has to overcome before changing the
controlled variable ycv. If a process model is available, the order r can be derived mathematically by
analyzing the relative degree of the process model defined as the number of times the controlled variable
ycv has to be differentiated with respect to time until the manipulated variable u appears explicitly
(Corriou, 2018). If no process model is available, the order r needs to be chosen based on knowledge or
intuition about the main inertia of the process.

As discussed by Baldea et al. (2015), the choice of the time constants τi is critical for the performance
of the scale-bridging approach:

On the one hand, if the time constants are too small, the scale-bridging dynamics are too fast and
cannot be realized by the controlled process. On the other hand, if the time constants are too large, the
scale-bridging dynamics are overly conservative and process flexibility is wasted. However, a rigorous way
to tune the time constants τi is missing in the literature.

In this paper, we argue that the time constants τi need to be tuned simultaneously with the set-point
bounds wmaxSP and wminSP . For illustration, we consider a transition of the controlled variable starting from
a small value ystartcv and ending at a new steady state with a higher value yendcv close to the maximum
allowable value ymaxcv . To speed up the transition, scheduling optimization might choose a set-point
wSP,elevated which is elevated above yendcv and even ymaxcv for a certain period of time. However, choosing
an elevated set-point value can lead to dynamics that are too fast for the controlled process. In particular,
if the time constants τi are small, the scale-bridging dynamics are already fast and an elevated set-point
may drive the controlled variable to infeasible values. A trade-off arises because we want to choose small
time constants in general but also want to avoid slow transitions towards the bounds of the controlled
variable.

In our case studies, we tune the scale-bridging parameters using a simple heuristic relying on sim-
ulations (section 3.2.1). Alternatively, existing knowledge about the time constants of the process, or
measurements can be used to calibrate the SBM.
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2.2 Scheduling optimization problem
To derive a complete problem formulation based on equations 2 and 3, we add a suitable objective function,
discretize time, and add inequality constraints to account for variable bounds, minimum part-load, and
problem specific constraints.

The objective Φ in simultaneous DR scheduling is to maximize cumulative product revenue ΦProduct
at final time tf minus the cumulative energy costs ΦEnergy at final time:

min Φ = −ΦProduct(tf ) + ΦEnergy(tf ) (4)
dΦProduct

dt
=
∑
p∈P

Kpqp (5)

dΦEnergy
dt

=
∑
e∈E

KePe (6)

with ΦProduct(t0) = ΦEnergy(t0) = 0

Here, P is the set of products, qp the flow rate of product p, and Kp the price of p. Similarly, E is the
set of end-energy forms consumed, Ke is the time-dependent price of energy e, and Pe is the consumed
power of energy e. t0 denotes the initial time.

For time discretization, we use three time grids (Figure 3). Grid 1 is given by the electricity market and
contains piece-wise constant electricity prices with time step ∆telec, e.g., 1 h or 15 min. Grid 2 contains
discrete decision variables z and piece-wise constant set-points wSP . The resolution of grid 2 should
not be too fine as it increases the number of integer variables and thus the combinatorial complexity of
the optimization problem. Still, it should be possible to alter discrete decisions z and set-points wSP

at least at every step change of electricity prices. Thus, the electricity price time step resolution should
constitute a lower bound on the resolution of grid 2. Making grid 2 finer than grid 1 by selecting time
steps ∆tdis < ∆telec, gives a higher flexibility and thus might enable higher profits. We recommend to
use time steps with lengths ∆tdis = 1

n1
∆telec with n1 being a small natural number.

discrete varibles z

set-points wSP

continuous
variables x, y

electricity
price

∆tdis

∆telec

∆tcont

Fig. 3. Three time grids used for discretization with timesteps ∆telec, ∆tdis, ∆tcont, respectively.

Grid 3 is used for continuous variables x,y. Differential states x are discretized using collocation.
Similar to the argument above, we propose to use finite elements with length ∆tcont = 1

n2
∆tdis. The

natural number n2 is chosen to be greater than or equal to one because whenever electricity prices,
discrete variables, or set-points perform step-changes, a new collocation element is necessary such that
non-smoothness in differential states x is possible. In result, x are continuous at the border of collocation
elements but first derivatives are allowed to perform step changes.

Within a finite element fe of grid 3, a collocation polynomial xfe of order Ncp is used to discretize
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differential states (Biegler, 2010; Nicholson et al., 2018):

xfe(τ) =

Ncp∑
j=0

lj(τ)xfe,j , τ ∈ [0, 1] (7)

lj =

Ncp∏
k=0,k 6=j

τ − τk
τ j − τk

(8)

dx

dt

∣∣∣∣
tfe,k

=
1

∆tcont

Ncp∑
j=0

xfe,j
dlj(τk)

dτ
(9)

In equations 7 and 8, the lj are Lagrange basis polynomials, τ is the scaled time within a finite element,

and xfe,j are state values at discretization points. In equation 9, dx
dt

∣∣∣∣
tfe,k

is the approximated time

derivative at a collocation point k, which is set equal to the right hand side of the linear differential
equation 2 for every time point tfe,k. The term dlj(τk)

dτ is a constant parameter in the optimization
because it only depends on τ . Moreover, as we choose discrete time, ∆tcont is constant. Therefore, xfe,j
are the only optimization variables, and thus, discretization with equation 9 leads to linear constraints.

As inequality constraints, we consider upper and lower bounds for all variables, minimum part-load
constraints for energy system components, and problem-specific constraints, e.g., minimum production
targets. Minimum part-load constraints are realized with a binary variable zon,c that indicates if the
output power Pc,out of an energy system component c is zero or between the minimal and maximal
allowed value, Pminc,out and Pmaxc,out, respectively:

zc,onP
min
c,out ≤ Pc,out ≤ zc,onPmaxc,out (10)

Assembling the discussed equations gives the simultaneous scheduling optimization problem for the
production process and its energy system.

3 Case study 1: Multi-product reactor
In this section, we assess the computational performance of our method in a first case study considering
a multi-product reactor. We benchmark the economic value of simultaneous dynamic scheduling to a
standard sequential scheduling and to a nonlinear scheduling optimization with the true process model.

3.1 Setup
The setup of the case study is visualized in Figure 4. An exothermic multi-product CSTR is cooled with
three compression chillers (CC). We use an exemplary reactor model from Petersen et al. (2017). In the
CSTR, a component A reacts to a component B. The reactor can produce three products I, II, III,
which are defined by the desired concentration of component A, CA. We assume a small tolerance of
+/- 0.01 mol

L such that for each product, we obtain a product band. Whenever the concentration CA is
within one of the three product bands, the associated product is produced. If the concentration is outside
of the three product bands, which happens necessarily during transitions, no product is produced. For
illustration, we consider prices of 1, 0.75, and 0.5 money unit (MU) (Table 1) and require a minimum
daily production of 5 hours and a maximum daily production of 8 hours for each product.

In the CSTR model, the rate of change for the concentration of component A is given by the material
balance and the rate of change for the temperature T is given by the energy balance:

dCA
dt

=
q

V
(CA,feed − CA)− ke−

EA
RT CA (11)

dT

dt
=

q

V
(Tfeed − T )− k∆Hr

%CP
e−

EA
RT CA −

Qcool
%CPV

(12)
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CSTRElectricity prices

t

Simultaneous scheduling

CC 2

CC 3

CC 1

Fig. 4. Case study: Simultaneous scheduling of a continuous-stirred-tank-reactor (CSTR) cooled by three
compression chillers (CC1, CC2, CC3). Time-varying electricity prices provide an economic incentive for
DR.

Tab. 1. Product band
[
CminA,p , C

max
A,p

]
in mol/L, price KP

p in money unit (MU)/m3, and cooling power
in steady state production Qsteadycool,p in MJ

h , for products p ∈ {I, II, III}

p
[
Cmin

A,p , Cmax
A,p

]
KP

p Qsteady
cool,p

I [0.09, 0.11] 1 6.05
II [0.29, 0.31] 0.75 5.43
III [0.49, 0.51] 0.5 4.65

In equations 11 and 12, q is the flow rate, V the reactor volume, CA,feed the feed concentration, k the
reaction constant, EA the activation energy, R the gas constant, Tfeed the feed temperature, ∆Hr the
enthalpy of reaction, % the density, cP the heat capacity, and Qcool is the cooling provided to the reactor.
The parameter values listed in Table 2 are exemplary values from Petersen et al. (2017), except that
we varied the activation energy EA to obtain an operating temperature where cooling with compression
chillers is a realistic option.

An efficient chiller is used for base-load cooling, whereas chiller 2 has a medium coefficient of perfor-
mance (COP), and chiller 3, which has a low COP, is used for peak cooling (see Table 3). We use the
compression chiller model from Voll et al. (2013) with a minimum part load of 20 % and a coefficient of
performance depending on nominal COP, COPNCC,i, cooling load QCC,i, and nominal cooling load QmaxCC,i:

COPCC,i = COPNCC,i(0.8615q3CC,i − 3.5494q2CC,i + 3.679qCC,i + 0.0126),with qCC,i =
QCC,i
QmaxCC,i

(13)

Note that our case study is meant to be an illustrative example rather than a real case. It allows us
to study whether the proposed method is able to consider process dynamics and discrete on/off-decisions
for energy system components simultaneously. We want to stress that even though the original nonlinear
process model is a small-scale model, the resulting scale-bridging model ( 1 ) would have the same basic
structure and computational complexity if a larger process model would be considered as the number
of scheduling-relevant dynamics is typically small (Baldea and Harjunkoski, 2014; Baldea et al., 2015;
Pattison et al., 2016).

Tab. 2. CSTR model parameters (adapted from Petersen et al. (2017))

symbol value unit

q 100 m3

h
V 100 m3

CA,f 1 mol
L

k0 7.2 · 1010 1
h

EA
R

6500 K
Tf 350 K
∆Hr
R%CP

−209 Km3

mol

% 1000 kg
m3

CP 0.239 J
kgK
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Tab. 3. Nominal cooling power QmaxCC,i and coefficient of performance COPNCC,i for compression chillers

compression chiller Qmax
CC,i [MJ

h
] COPN

CC,i[−]

1 4.8 6
2 2.3 4.5
3 1.5 3

We employ conventional PID control (Corriou, 2018) to track the filtered set-point for the concentra-
tion CA by manipulating the cooling power Qcool:

Qcool = KP ∗
(
e+ τD

de

dt
+

1

τI

∫ t

0

edt

)
+QPID,0cool , with e = wSP,fil − CA (14)

The controller parameters in equation 14 are: KP , τD, τI , and QPID,0cool . We choose QPID,0cool to be the
steady-state cooling power of product II (Table 1) and manually tune the remaining controller parameters
in a simulation such that the filtered set-point wSP,fil is tracked stable and accurately. The resulting
parameters are: KP = 1000 MJ L

h mol , τD = 0.1 h, and τI = 0.2 h. The stable and accurate set-point
tracking is shown in the following (Figure 6).

3.2 Simultaneous dynamic scheduling
To apply our simultaneous dynamic scheduling method, we now set up the three parts of our model and
the scheduling optimization problem as presented in Section 2.

3.2.1 Scale-bridging production process model

As discussed in section 2.1, we need to choose the order r, the time constants τi, and the set-point bounds
wminSP , wmaxSP for the scale-bridging production process model 1 . The natural order r in this case is 2, as
can be shown from the physical process model: The manipulated variable Qcool does not appear in the
first derivative of the controlled variable CA (equation 11). If equation 11 is differentiated with respect
to time and the term dT

dt is replaced using equation 12, the second time derivative d2CA

dt2 appears as an
explicit function of the input Qcool. Thus, the system has the relative degree 2. The more descriptive
explanation is that a change in the cooling power Qcool has to first overcome the inertia of the temperature
T and then the inertia of the concentration CA.

Second-order systems are described in control theory by the time constant of their natural oscillation
β and a damping coefficient ζ (Corriou, 2018). The two tunable time constants τ1 and τ2 become:

τ1 = 2ζβ (15)

τ2 = β2 (16)

Following Du et al. (2015), we choose a critically damped response, i.e., ζ = 1, as we want to have fast
but no oscillating dynamics.

In the following, we describe the heuristic procedure used to define the remaining time constant β
simultaneously with the bounds for the set-point wmaxSP and wminSP . The allowed range of the set-point
must at least cover the operating range of the concentration CA which is between CminA = 0.1 mol

L and
CmaxA = 0.5 mol

L . However, as discussed in section 2.1, it is reasonable to allow elevated set-points in
order to avoid overly conservative transitions towards the bounds of the concentration CA. We introduce
an elevation constant welevationSP and calculate the bounds of the set-point as:

wmaxSP = CmaxA + welevationSP (17)

wminSP = CminA − welevationSP (18)

We want to find a combination of β and welevationSP that (i) is feasible, i.e., the filtered set-point can be
tracked accurately without oscillations, and (ii) allows for fast product transitions. In the following, we
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Fig. 5. Result of the parameter tuning: maximum allowable set-point elevation welevation,maxSP (top) and
sum of all 6 transition times ∆tsum resulting with welevation,maxSP (bottom) for different values of the time
constant β. We choose the optimal, i.e., smallest ∆tsum by setting β = 0.36 h and welevationSP = 0.15 mol

L .

first present a routine to evaluate the feasibility and speed for a given combination of β and welevationSP

and then explain how we explore the space of possible combinations.
To evaluate a combination of β and welevationSP , we first optimize and then simulate all 6 possible

transitions between the 3 products bands. For a given combination of β and welevationSP and for each
transition s, we perform the following four steps:

1. Optimize a sequence for the set-point wSP using model 1 to start from product pstart and reach
the product band of product pend as fast as possible.

2. Take the resulting set-point sequence as input to a simulation of the set-point filter, the underlying
PID-control, and the nonlinear process model.

3. Based on the simulation result, check if a transition is feasible. We define a transition to be feasible
if (i) the concentration reaches the product band of the desired product pend and (ii) once the
product band is reached the concentration stays inside the band of pend.

4. Store the time needed to reach the product band ∆ts.

A combination of β and welevationSP is feasible if all 6 transitions are feasible. We evaluate the quality of
feasible parameter combinations by the sum of all 6 transition times

∆tsum =
∑
s∈S

∆ts, (19)

where S is the set of possible transitions. As we aim for fast transitions, we prefer feasible combinations
of β and welevationSP with a small value of ∆tsum.

To explore the space of possible combinations, we first set the set-point elevation to zero, i.e.,
welevationSP = 0 mol

L , and search for the smallest time constant β that leads to feasible transitions. Next,
we continue to increase β, i.e., we slow the dynamics down, but allow elevated set-points.

As Figure 5 shows, exploring the trade-off between set-point elevation and time constants improves
the scale-bridging model performance significantly. The smallest, i.e., fastest, possible time constant
βmin = 0.26 h, which does not allow any set-point elevation, leads to a combined transition time of
∆tsum = 6.22 h. The slightly higher time constant β = 0.36 h in combination with a set-point elevation
of welevationSP = 0.15 mol

L allows to reduce the transition time by 35% to the optimum of ∆tsum = 4.02 h.
The resulting transitions with the chosen optimal values are shown in Figure 6. Note that the set-point
elevation is not strictly increasing with β due to the discretization. For example, with β = 0.49 h, a
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Fig. 6. Six possible transitions between the three products with the chosen time constant β = 0.36 h
and set-point elevation welevationSP = 0.15 mol

L (compare to Figure 5). The piece-wise constant set-point
from optimization wSP results in a filtered set-point wSP,fil, which can be tracked accurately such that
the actual value of the concentration CA resulting from the controlled nonlinear process model matches
the filtered set-point wSP,fil well.

set-point elevation of welevationSP = 0.26 mol
L is feasible, whereas for β = 0.50 h, welevationSP = 0.26 mol

L is not
feasible. The reason is that in one transition the set-point is at wmaxSP = 0.76 mol

L for one discretization
time step longer with β = 0.50 h compared to β = 0.49 h leading to a slight overshoot of the concentration
out of the product band.

3.2.2 Energy demand model

For part 2 , the process energy demand model, we express the cooling power Qcool as a function of the
concentration CA and its time derivatives. As the operation of the multi-product reactor is divided in
production and transition periods and we need to model the cooling power accurately in particular during
the long production periods, we split Qcool into a steady-state and a dynamic part:

Qcool = Qsteadycool +Qdynamiccool (20)

To approximate the first contribution Qsteadycool , we assume that steady-state cooling powers are known for
all three products and interpolate Qsteadycool as a piece-wise affine function of CA. The three steady-state
operating points CA = {0.1 mol

L , 0.3 mol
L , 0.5 mol

L } with corresponding cooling powers Qsteadycool lead to
two piece-wise affine segments: The first affine segment approximates Qsteadycool for CA ≤ 0.3 mol

L and the
second affine segment approximates Qsteadycool for CA ≥ 0.3 mol

L . With the binary variable zsteadycool , we can
express Qsteadycool as

Qsteadycool =Qsteady
cool,0.3mol

L

+msteady
1 (1− zsteadycool )(CA − 0.3

mol

L
) +msteady

2 zsteadycool (CA − 0.3
mol

L
), (21)

whereQsteady
cool,0.3mol

L

is the steady-state cooling power at CA = 0.3 mol
L ,msteady

1 is the slope for CA ≤ 0.3 mol
L ,

and msteady
2 is the slope for CA ≥ 0.3 mol

L . The slopes msteady
1 and msteady

2 are calculated from the cooling
power at steady-state operating points (Table 1). The bilinear terms zsteadycool CA are reformulated using
the Glover reformulation (Glover, 1975).

The approximation of Qdynamiccool is fitted to simulation data. Again, we simulate all six possible
transitions using the nonlinear reactor model and the underlying control. The resulting cooling power is
the red curve in Figure 7. The total cooling power deviates from Qsteadycool (dashed green curve in Figure
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7) during transitions. We model the dynamic part of the cooling power Qdynamiccool as a linear function of
the derivatives of the concentration, i.e.,

Qdynamiccool = c1
dCA
dt

+ c2
d2CA
dt2

, (22)

with the two fitting parameters c1, c2, whose values are determined using the normal equation method
(Lewis et al., 2006). The values are: c1 = −2.98 MJ

h , c2 = 0.453 MJ
h . The resulting approximation of

Qcool is shown in blue in Fig 7. Note that in Figure 7, the concentration does not reach steady state
after entering the product bands. Still, the fitted dynamic cooling power Qdynamiccool is negligible for 5 of
6 production phases and only in the second production phase there is a small offset between model and
actual cooling power.
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Fig. 7. Fitting results for steady-state and total cooling power Qsteadycool and Qcool, respectively, of the
process energy demand model (compare to equations 20 and 21)

3.2.3 Energy system model

For the energy system model 3 , we have to calculate the electric input power PCC,i needed for the
compression chillers as a function of the required cooling power QCC,i. As the COP of the compression
chillers depends on the part-load fraction (equation 13), PCC,i is a nonlinear function of QCC,i, which
we approximate as a piece-wise affine function. We use two piece-wise affine segments per chiller with
the breakpoint at 70 % part load; two segments provide a good approximation (Voll et al., 2013). The
piece-wise affine curves can be modeled without introduction of additional binary variables, as the electric
input power PCC,i is a convex function of the cooling power QCC,i. Using equations from Neisen et al.
(2018), we introduce two continuous variables yi,1, yi,2 that cover the two affine segments:

QCC,i = yi,1 + yi,2 ∀i = 1, 2, 3 (23)

PCC,i = PminCC,izon,CC,i + yi,1mi,1 + yi,2mi,2 ∀i = 1, 2, 3 (24)

In equation 24, PminCC,i is the electric input power at minimum part-load of chiller i, zon,CC,i is a binary
indicating whether chiller i is active, and mi,1,mi,2 are the slopes within the two piece-wise affine seg-
ments. Finally, we include the energy balance stating that the cooling demand of the reactor must be
matched by the compression chillers:

3∑
i=1

QCC,i = Qcool (25)
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3.2.4 Scheduling optimization problem

In this case study, we use the objective function as introduced in the method section (equations 4 - 6). For
time discretization, we have ∆telec = 1 h as we consider hourly changing electricity prices. For discrete
variables, we choose ∆tdis = 15 min so the optimization can differentiate between transitions that can be
performed within 30, 45, or 60 minutes. This resolution is reasonable as the transition times are between
28 and 54 minutes (Figure 6). Note that though a finer discretization, e.g., 10 minutes, may lead to even
higher profits, more binary variables will further increase the computational burden. For the continuous
variables, we find a discretization of ∆tcont = 15 min with Ncp = 3 collocation points to give a sufficiently
accurate time discretization. In section 3.5, we evaluate the optimization result in a simulation on the
original nonlinear process model and thereby also verify the accuracy of our time discretization.

Finally, we add problem-specific constraints. Two constraints per product determine if a product p is
produced, i.e, the binary variable zp should be one whenever CminA,p ≤ CA ≤ CmaxA,p and zero in all other
cases. As small variations between model 1 and the nonlinear process model can occur, we add a small
safety margin εp:

− (1− zp) ≤ CA − CminA,p − εp ∀p (26)

− (1− zp) ≤ −CA + CmaxA,p − εp ∀p (27)

We choose εp = 0.003 mol
L based on simulation results. If the process cannot be simulated, a safety margin

needs to be chosen based on measurement data. It would be reasonable to first start with a conservative
safety margin, evaluate the difference between model and plant data and then adjust the safety margin.
Similar to the production binaries zp, we need constraints that enforce the correct behavior of the binary
zsteadycool needed for the cooling model (compare to equation 21):

CA − 0.29 ≥ −(1− zsteadycool ) (28)

CA − 0.31 ≥ zsteadycool (29)

Lastly, we need to secure that the active chillers have more spare capacity than the maximum error
of the data-driven model. As discussed in section 2, our assumption that errors in energy demand are
compensated by the energy system is only valid if spare capacity is given. Consequently, we want to avoid
a situation in which the scheduling optimization drives all active compression chillers to full load. If for
example two chillers are active and operate at full load and the true nonlinear cooling power demand is
slightly higher than the cooling power calculated from model 2 , an unplanned start-up of chiller three
has to be performed. However, we want to avoid excessive on/off-switches as they shorten the equipment
life-time. To this end, based on the fit of model 2 , we introduce a safety margin of εQ = 0.1 by setting

Qcool ≤ (1− εQ)

3∑
i=1

zon,CC,iQ
max
CC,1, (30)

such that there always is a 10 % safety margin between the amount of cooling the active chillers can
supply at full load and the cooling power calculated from model 2 . Again, this safety margin could
alternatively be determined based on measurements.

To speed up the solution time, we add the constraint that every product can only be produced once
during the 24 hour horizon. Note that this additional constraint does not cut off the optimal solution:
As all the transition times are between 0.5 and 1 hour, it is not reasonable to perform more transitions
than necessary, because any additional transition would correspond to at least half an hour without
product revenue, which clearly outweighs energy cost savings. The constraint limiting the number of
production starts can be seen as a discrete time analogue to setting the number of production slots
equal to the number of products in a continuous time formulation, see, e.g., Flores-Tlacuahuac and
Grossmann (2006). To implement the constraint, we introduce a continuous variable sp,t that is equal
to one, whenever production of product p starts in a timestep t, and zero otherwise. Here, we use the
index t to indicate the timestep. For the sake of readability, this index is neglected in all the previous
equations as the timestep is the same for all variables there. For every discrete timestep t, the following
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equations from Neisen et al. (2018) are implemented such that sp,t is one if and only if the production
binary zp,t is one and the production binary zp,t−1 is zero:

0 ≤ sp,t ≤ 1 (31)
sp,t ≥ zp,t − zp,t−1 (32)
sp,t ≤ 1− zp,t−1 (33)
sp,t ≤ zp,t (34)∑
t∈Tdis

sp,t ≤ 1 ∀p (35)

Note that one can easily change equation (35) to allow two or more production starts if desired.
To formulate the optimization problem, we use pyomo (Hart et al., 2017, 2011) and the extension

pyomo.dae (Nicholson et al., 2018) to discretize time. We solve the problem using gurobi version 8.1.0
(Gurobi Optimization, LLC, 2021) with an optimality gap of 1.0 %. All calculations are performed on a
Windows 10 machine with Intel(R) Core(TM) i5-8250U core and 24 GB RAM.

3.3 Sequential steady-state scheduling benchmark
This benchmark represents a typical sequential scheduling without DR, referred to as SEQ in the following.
First, the process schedule is optimized with only the product revenue ΦProduct in the objective function.
Second, the energy costs are minimized for fixed production decisions.

We perform a steady-state scheduling with predefined minimum transition times between products
using the pre-optimized transition profiles from section 3.2.1. For the steady-state scheduling optimiza-
tion, only the discrete time grid is necessary. At each point in time, the process is either in steady-state
production or in transition: ∑

p∈P
zp +

∑
s∈S

zs = 1 (36)

In equation 36, zs is a binary indicating if the process is in transition s with S being the set of possible
transitions.

The cooling power is assumed to be equal to the steady-state cooling power Qsteadycool,p of a product p
during production phases. During transition phases, we use the average cooling power Qaveragecool,s within
a transition s. This average power is calculated from the simulations shown in Figure 7 as the integral
over the transition divided by the transition length. However, during transitions peak cooling demands
vary significantly from average cooling demands. Consequently, the active chillers have to provide enough
spare capacity to be able to supply the peak cooling demand Qpeakcool,s during a transition s. The calculation
of the cooling power is given by equation 37 and the constraint to enforce spare capacity by equation 38:

Qcool =
∑
p∈P

zpQ
steady
cool,p +

∑
s∈S

zsQ
average
cool,s (37)

∑
s∈S

zsQ
peak
cool,s ≤

3∑
i=1

zon,CC,iQ
max
CC,i (38)

As the reactor cannot jump between products, a transition s must be at least as long as the minimum
transition time ∆tmins . For implementation, we introduce the variable ∆ts that indicates the time the
process has been in a transition state s. We show the relevant equations for transition s = I → II.
Again, the index t is used to indicate the time step:

∆tI→II,t ≤ zI→II,t (39)
∆tI→II,t ≤ ∆tI→II,t−1 + ∆tdis (40)
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The process can only be in the transition s = I → II, if it already was in s = I → II in the last time
step or if it was producing I:

zI→II,t ≤ zI→II,t−1 + zI,t−1 (41)

The process can only produce product II, if it was producing II in last time step, or of it was in transition
state I → II longer than the minimum time required for the transition (∆tI→II,t−1 ≥ ∆tminI→II), or if
it was in transition state III → II longer than the minimum time (∆tIII→II,t−1 ≥ ∆tminIII→II). To
implement this logic, we use big-M constraints (Bemporad and Morari, 1999):

zII,t ≤3zII,t−1M + (∆tI→II,t−1 −∆tminI→II)M + 3(1− zII,t)M + 2zIII→II,t−1M (42)

zII,t ≤3zII,t−1M + (∆tIII→II,t−1 −∆tminIII→II)M + 3(1− zII,t)M + 2zI→II,t−1M (43)

In equations 42 and 43, M needs to be a sufficiently large constant. We choose M = 2.4 · 105.

3.4 Scheduling with full nonlinear model
To estimate an upper bound on the economic performance of simultaneous scheduling, we optimize the
nonlinear full-order system model. To this end, we replace the models 1 , 2 , 3 in the optimization
problem with the nonlinear reactor model (equations 11 -12) and the nonlinear compression chiller ef-
ficiency (equation 13). Again, time is discretized using collocation and we receive a MINLP. We solve
the MINLP optimization problem using BARON version 20.10.16 (Khajavirad and Sahinidis, 2018) in
heuristic mode, i.e., the resulting solution is no rigorous bound. We refer to this benchmark as MINLP.
To obtain a feasible initial point, we fix the binary variables to the values resulting from our simultaneous
dynamic scheduling and solve the resulting NLP.

3.5 Results
In this section, we compare the economic profit obtained with our simultaneous dynamic scheduling (SDS)
to the sequential scheduling (SEQ) and the full-order nonlinear scheduling (MINLP). While in case of
the MINLP the profit is the objective value in the optimization, for the sequential scheduling and the
simultaneous dynamic scheduling, the profit is derived from a simulation of the original nonlinear process
model. Accordingly, the optimized set-point sequence is used as input to a simulation of the underlying
controller and the nonlinear process model.

The MINLP solution improves the SEQ solution by 5.4 % (Figure 8). Our simultaneous dynamic
scheduling gains 5.2 % compared to SEQ and thus captures 96 % of the MINLP improvement. The
improved economics mainly stem from demand response, i.e., products with higher cooling demands are
produced at times of lower electricity prices (Figure 9). Additionally, we notice a higher energy efficiency
during transition phases such that our simultaneous dynamic scheduling reduces the amount of electricity
consumed by 1.2 % compared to SEQ.

Figure 10 shows concentration CA and cooling power Qcool for both SDS and SEQ. In the case of
SDS, the difference between the optimization model and the actual cooling power during the transitions
is smaller than in the case of SEQ because the dynamics of the cooling power are modeled in SDS while
SEQ only considers the average cooling power during a transition. Modeling the dynamics of the cooling
power within a transition leads to better scheduling decisions regarding the on/off status of the three
compression chillers. The most distinct difference occurs in the transition from product I to product III.
In the sequential scheduling, this transition features a high cooling power peak, which requires to turn
on chiller 3 with the worst COP. In the case of SDS, the same transition is shaped such that it is not
necessary to turn on chiller 3. Moreover, SDS anticipates that chiller 2 with the medium COP can be
turned off during the second half of the transition. We expect that energy efficiency improvements are
even higher in cases with longer transitions. Naturally, the potential for energy efficiency improvements
depends on the accuracy of the data-driven energy demand model ( 2 ). In this case study, we accounted
for inaccuracies in model 2 by adding a 10 % safety margin to the cooling power (equation 30) and still
find significant energy efficiency improvements.
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Fig. 8. Economic improvements obtained with the two demand response approaches simultaneous dy-
namic scheduling (SDS), and the full nonlinear model (MINLP) compared to sequential steady-state
scheduling (SEQ) without DR.
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Fig. 9. Electricity price Kelec and simulated cooling power Qcool for simultaneous dynamic scheduling
(SDS) and sequential steady-state scheduling (SEQ). SDS performs demand response and shifts cooling
power to times of favorable prices.

Note that in our illustrative example, we assume that once the energy system components are active
they can react instantaneously. Moreover, we assume that the frequency of on/off-switches resulting
from the scheduling optimization with 15 minute resolution for discrete variables is acceptable. In prac-
tice, it might be necessary to consider ramp limits (Sass and Mitsos, 2019), or minimum up and down
times (Carrion and Arroyo, 2006). Such constraints can be added in a straight-forward manner to the
formulation if needed.

A solution with a 1.0 % optimality gap is found and proven in 264 s. Such a solution time is applicable
for both offline day-ahead scheduling and online re-scheduling during the day, e.g., with a sampling time
of one hour. Note that in re-scheduling the solution from the last scheduling-iteration can be used for
initialization to further speed up the optimization. We also observe that SDS finds feasible near-optimal
solutions quickly as shown in the convergence plot (Figure 11). After 135 s a solution is found that has
only 1.7 % gap to the final lower bound and already outperforms the sequential scheduling.

3.5.1 Influence of time constant β

If a nonlinear process model is not available, the time constant β cannot be chosen as in section 3.2.1
but needs to be chosen based on intuition or recorded product transitions. In result, the time constant
might be suboptimal. To study the influence of the time constant choice on the profit, the time constant
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Fig. 10. Comparison of concentration CA and cooling power Qcool between simultaneous dynamic
scheduling (SDS, left) and sequential scheduling (SEQ, right). We indicate the three product bands (I,
II, III) and the fraction of the cooling power Qcool that is supplied by the three compression chillers
(CC1, CC2, CC3).

in our case study is increased from the optimal value β = 0.36 h by up to 100 % (Figure 12). Note that
the profit is calculated in a simulation using the original process model which leads to small differences
between scheduling optimization and process simulation and therefore the simulated objective shown in
Figure 12 does not strictly increase with β.

As long as β is increased by 20 % or less the objective does not worsen more than 0.5 %. This result
can be explained by the total production time which is 21.75 h for β = 0.36 h. These 21.75 hours of
production are still reached for β = 0.43 h and the loss in profit is small. Generally, production time
changes in 0.25 h steps corresponding to the time discretization of the binary variables (section 3.2.4).
When β is increased by more than 20 % above the optimal value, production is lost and the objective
substantially worsens. But, even for a 50 % increase, the objective is still better than that of the sequential
solution.

4 Case Study 2: Reactor with variable concentration
While multi-product processes are one example for scheduling-relevant dynamics, single-product processes
can also introduce dynamics if they can vary their controlled variable around a nominal value as long
as the nominal value is reached on average over the time horizon. To demonstrate that our SDS also
works for a single-product case, we present a second case study and again study the influence of the time
constant. The second case study is constructed by modifying the first one.

4.1 Setup
A similar setup is used as in the previous case study with a CSTR and three compression chillers (Figure
4). Instead of a multi-product CSTR, we assume a single-product CSTR with a nominal concentration
CnomA = 0.3 mol

L . The CSTR has flexibility because we assume that the concentration is allowed to vary
between CminA = 0.09 mol

L and CmaxA = 0.51 mol
L as long as the nominal concentration is reached on
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Fig. 12. Objective (in money unit (MU)) and total production time tProduction for different time constants
β starting from nominal β = 0.36 h up to β = 0.72 h. The objective values resulting from the sequential
approach (SEQ) and MINLP optimization with both 21.75 hours of production are shown for comparison
(dashed and dotted lines, respectively).

average over the time horizon tf − t0. Accordingly, the condition∫ tf

t0

CAdt = CnomA (tf − t0) (44)

has to hold. Such setups occur when the product can be stored and is well-mixed in the storage tank.
Note that an equation of this type would also occur for processes having a variable production rate as
controlled variable ycv. Only the concentration CA in equation 44 would have to be replaced by the
production rate.

Obviously, it is favorable to operate at concentrations with a high cooling demand at times of low
electricity prices and at concentrations with low cooling demand at times of high prices. The challenge
for scheduling optimization thus is to find a trajectory for the concentration that (i) can be realized by
the process and (ii) reaches the nominal concentration on average. At the same time, the on/off status
of the chillers has to be determined. Note that the scheduling problem has three differences compared to
the previous case:

1. Only the cumulative energy costs at final time ΦEnergy(tf ) are considered in the objective (equa-
tion 4) since the production is fixed.

2. Equations 5, 26, 27, and 31 - 35 are removed since they are associated with the different products
and the production bands.

3. Equation 44 is included such that the nominal concentration is reached on average.
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As energy costs are the only objective function in the second case study, a sequential scheduling is
not applicable because there is no objective for the process optimization. Thus, we benchmark our
SDS against a steady-state operation of the CSTR at the nominal concentration. Again, as a second
benchmark, a MINLP optimization is performed using BARON in heuristic mode. A feasible initial
point is found by fixing the binary variables to the values from our simultaneous dynamic scheduling and
solving the resulting NLP.

4.2 Results
The MINLP solution improves the steady-state solution by 6.6 %. Our simultaneous dynamic scheduling
(SDS) reduces costs by 5.6 % compared to the steady-state benchmark and thus captures 85 % of the
MINLP improvement. The optimization runtime of our SDS approach is only 68 s. Note that again the
MINLP optimization with BARON does not provide a feasible point without initialization from the SDS
solution.

Compared to case study 1, the choice of the time constant β has a much lower impact on the economic
result (Figure 13). Note that we use the same time constant β as in case study one, because the transitions
studied during tuning cover the complete range of allowed concentrations (compare to section 3.2.1). If
β is doubled from 0.36 h to 0.72 h, the cost reduction still amounts to 5.2 % compared to steady-state
operation (Figure 13). The operation is very similar for both time constants and the cooling power
only deviates significantly in hours 1, 7, and 16-17 (Figure 14). In hours 16 and 17, the schedule with
β = 0.72 h drives the reactor from minimum concentration to maximum concentration. The higher
flexibility of the low time constant β = 0.36 h allows to consume more cooling in hour 16 and less in hour
17 compared to the case where β = 0.72 h. Still, the larger time constant can capture the main trend
of the electricity price profile, which has a peak in the morning and another one in the afternoon. Such
a price profile is typical for the German market where the main price periodicities are 24 and 12 hours
(Schäfer et al., 2020). Even if β is increased by a factor of 10, the scheduling can still capture the main
trend of the electricity price profile (Figure 14). Therefore, significant cost reductions can be reached
even if the chosen time constants are far above the optimal value.
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Fig. 13. Energy costs Φenergy(tf ) (in money unit (MU)) in the second case study achieved with
simultaneous dynamic scheduling (SDS) for different time constants β normalized to nominal value
βnom = 0.36 h. The energy costs resulting from steady-state operation and the MINLP benchmark
are shown for comparison (dashed and dotted lines, respectively).

5 Conclusion and Discussion
For power-intensive processes, volatile electricity prices provide an opportunity to increase profit via de-
mand response (DR). A particularly promising DR option is the simultaneous scheduling optimization of
processes and their energy systems. As such an optimization must consider scheduling-relevant process
dynamics as well as on/off-decisions in the energy supply system, computationally challenging nonlin-
ear mixed-integer dynamic optimization (MIDO) problems arise. In this work, we present an efficient
simultaneous dynamic scheduling (SDS) approach that relies on a tailored scheduling model consisting of
(i) a linear scale-bridging model for the closed-loop response of the process, (ii) a data-driven model for
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Fig. 14. Electricity price Kelec, concentration CA, and cooling power Qcool in the second case study for
three different values of the time constant β.

the process energy demand, and (iii) a mixed-integer linear programming (MILP) model of the energy
system. Using a discrete time formulation and collocation, we receive an overall MILP formulation that
can be optimized in practically relevant times.

First, we apply the method to a case study of a multi-product continuous stirred tank reactor (CSTR)
cooled by three compression chillers. Compared to a typical sequential scheduling, we find that the
presented SDS approach improves economic profit by 5.2 %, just shy of the 5.4 % found by nonlinear
scheduling optimization using the original nonlinear process model. Second, we investigate a single-
product reactor with a variable concentration. Here, SDS outperforms a steady-state operation by 5.6 %
while a nonlinear scheduling reaches 6.6 %. In both case studies, the optimization runtime is sufficiently
fast for online optimization. As the proposed scheduling model always has the same basic structure, we
expect the method to be real-time applicable in many cases.

A restriction of our method is that the scale-bridging approach imposes a single common linear closed-
loop response in all operating regimes, which may cut off some of the process flexibility and thus DR
potential. For example, in our first case study, we must choose the time constants of the enforced linear
closed-loop response such that all six product transitions are feasible. Due to the nonlinear behavior of
the CSTR, some of the transitions could in principle be performed faster, however, the critical transition,
i.e., the slowest one, limits the time constants for the scale-bridging model. Moreover, it may in general be
difficult to find the time constants that give the fastest possible linear closed-loop response. Finding the
time constants using the heuristic presented in section 3.2.1 is straightforward if the controlled process
can be simulated and the relevant transitions can be studied in numerical experiments. For multi-
product processes, which are inherently dynamic, the time constants can also be chosen based on recorded
transitions. Our sensitivity study shows that as long as transition times are only moderately larger than
necessary, costs can still be reduced compared to a standard sequential scheduling. For processes that
are currently operated in steady state without DR, no recorded transitions might be available. However,
we demonstrate that, for such processes, time constant choice is less critical as even greatly suboptimal
values may allow to follow slow trends in the electricity price profile.

Overall, our results demonstrate that the proposed method offers a favorable trade-off between accu-
rate handling of dynamic flexibility and online applicable optimization run-times.
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Nomenclature
Abbreviations
CC compression chiller
COP coefficient of performance
CSTR continuous-stirred-tank-reactor
DR demand response
MIDO mixed-integer dynamic optimization
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear program-

ming
MU money unit
SDS simultaneous dynamic scheduling
SEQ sequential scheduling benchmark
SO-MPC scheduling-oriented model predictive

control

Greek symbols
β time constant of natural oscillation
ε safety margin
ζ damping coefficient
% density
τ time constant
τ scaled time
Φ objective

Latin symbols
A−H matrices
CA concentration of component A
c fitting coefficient
cP heat capacity
EA activation energy
f , g functions
∆Hr enthalpy of reaction
K price
k reaction constant
l Lagrange polynomial
M big-M constant
m linear slope
Ncp order of collocation polynomial
n natural number
P power
Q thermal power
q flow rate
R gas constant
r order of differential equation
s variable to indicate start of production
T temperature
t time
u manipulated variable
V volume
wSP set-point
x differential state
y continuous variable
z discrete variable

Sets
E end-energy forms
P products
S set of possible transitions
Tdis timepoints on discrete grid

Subscripts
0 initial
c component
cv controlled variable
cont continuous
cool cooling
dis discrete
e end-energy form
ec energy costs
ed energy demand
elec electricity
f final
fe finite element
fil filtered
in input
on on-off status
out output
p product
s transition
sum summed value

Superscripts
end final value
max maximum value
min minimum value
N nominal
start starting value
steady steady-state value
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