000905455 001__ 905455
000905455 005__ 20240712112904.0
000905455 0247_ $$2arXiv$$aarXiv:2110.08137
000905455 0247_ $$2Handle$$a2128/30354
000905455 0247_ $$2altmetric$$aaltmetric:115366773
000905455 037__ $$aFZJ-2022-00696
000905455 1001_ $$0P:(DE-Juel1)176974$$aBaader, Florian$$b0$$ufzj
000905455 245__ $$aDynamic Ramping for Demand Response of Processes and Energy Systems based on Exact Linearization
000905455 260__ $$c2021
000905455 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1642514014_6597
000905455 3367_ $$2ORCID$$aWORKING_PAPER
000905455 3367_ $$028$$2EndNote$$aElectronic Article
000905455 3367_ $$2DRIVER$$apreprint
000905455 3367_ $$2BibTeX$$aARTICLE
000905455 3367_ $$2DataCite$$aOutput Types/Working Paper
000905455 500__ $$a26 pages, 9 figures
000905455 520__ $$aThe increasing share of volatile renewable electricity production motivates demand response. Substantial potential for demand response is offered by flexible processes and their local multi-energy supply systems. Simultaneous optimization of their schedules can exploit the demand response potential, but leads to numerically challenging problems for nonlinear dynamic processes. In this paper, we propose to capture process dynamics using dynamic ramping constraints. In contrast to traditional static ramping constraints, dynamic ramping constraints are a function of the process state and can capture high-order dynamics. We derive dynamic ramping constraints rigorously for the case of single-input single-output processes that are exactly input-state linearizable. The resulting scheduling problem can be efficiently solved as a mixed-integer linear program. In a case study, we study two flexible reactors and a multi-energy system. The proper representation of process dynamics by dynamic ramping allows for faster transitions compared to static ramping constraints and thus higher economic benefits of demand response. The proposed dynamic ramping approach is sufficiently fast for application in online optimization.
000905455 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000905455 536__ $$0G:(DE-HGF)ESI-1720$$aESI - Energy Systems Integration (ESI-1720)$$cESI-1720$$x1
000905455 588__ $$aDataset connected to arXivarXiv
000905455 7001_ $$0P:(DE-Juel1)180103$$aAlthaus, Philipp$$b1$$ufzj
000905455 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b2$$ufzj
000905455 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b3$$eCorresponding author$$ufzj
000905455 8564_ $$uhttps://juser.fz-juelich.de/record/905455/files/2110.08137.pdf$$yOpenAccess
000905455 909CO $$ooai:juser.fz-juelich.de:905455$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176974$$aForschungszentrum Jülich$$b0$$kFZJ
000905455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176974$$aRWTH Aachen$$b0$$kRWTH
000905455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180103$$aForschungszentrum Jülich$$b1$$kFZJ
000905455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180103$$aRWTH Aachen$$b1$$kRWTH
000905455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b2$$kFZJ
000905455 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b2
000905455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b3$$kFZJ
000905455 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000905455 9141_ $$y2021
000905455 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905455 920__ $$lyes
000905455 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000905455 9801_ $$aFullTexts
000905455 980__ $$apreprint
000905455 980__ $$aVDB
000905455 980__ $$aUNRESTRICTED
000905455 980__ $$aI:(DE-Juel1)IEK-10-20170217
000905455 981__ $$aI:(DE-Juel1)ICE-1-20170217