001     905455
005     20240712112904.0
024 7 _ |a arXiv:2110.08137
|2 arXiv
024 7 _ |a 2128/30354
|2 Handle
024 7 _ |a altmetric:115366773
|2 altmetric
037 _ _ |a FZJ-2022-00696
100 1 _ |a Baader, Florian
|0 P:(DE-Juel1)176974
|b 0
|u fzj
245 _ _ |a Dynamic Ramping for Demand Response of Processes and Energy Systems based on Exact Linearization
260 _ _ |c 2021
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1642514014_6597
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 26 pages, 9 figures
520 _ _ |a The increasing share of volatile renewable electricity production motivates demand response. Substantial potential for demand response is offered by flexible processes and their local multi-energy supply systems. Simultaneous optimization of their schedules can exploit the demand response potential, but leads to numerically challenging problems for nonlinear dynamic processes. In this paper, we propose to capture process dynamics using dynamic ramping constraints. In contrast to traditional static ramping constraints, dynamic ramping constraints are a function of the process state and can capture high-order dynamics. We derive dynamic ramping constraints rigorously for the case of single-input single-output processes that are exactly input-state linearizable. The resulting scheduling problem can be efficiently solved as a mixed-integer linear program. In a case study, we study two flexible reactors and a multi-energy system. The proper representation of process dynamics by dynamic ramping allows for faster transitions compared to static ramping constraints and thus higher economic benefits of demand response. The proposed dynamic ramping approach is sufficiently fast for application in online optimization.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a ESI - Energy Systems Integration (ESI-1720)
|0 G:(DE-HGF)ESI-1720
|c ESI-1720
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Althaus, Philipp
|0 P:(DE-Juel1)180103
|b 1
|u fzj
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 2
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 3
|e Corresponding author
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/905455/files/2110.08137.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905455
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176974
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)176974
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180103
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)180103
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21