000905543 001__ 905543
000905543 005__ 20240712112817.0
000905543 0247_ $$2doi$$a10.1039/D1MA01031J
000905543 0247_ $$2Handle$$a2128/33747
000905543 0247_ $$2WOS$$aWOS:000739565700001
000905543 037__ $$aFZJ-2022-00784
000905543 041__ $$aEnglish
000905543 082__ $$a540
000905543 1001_ $$0P:(DE-HGF)0$$aWallis, David$$b0
000905543 245__ $$aProgressive changes in crystallographic textures of biominerals generate functionally graded ceramics
000905543 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2022
000905543 3367_ $$2DRIVER$$aarticle
000905543 3367_ $$2DataCite$$aOutput Types/Journal article
000905543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714997045_14323
000905543 3367_ $$2BibTeX$$aARTICLE
000905543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905543 3367_ $$00$$2EndNote$$aJournal Article
000905543 520__ $$aBiomineralizing organisms are widely praised for their ability to generate structural materials with exceptional crystallographic control. While earlier studies highlighted near-to single-crystalline biominerals, complex polycrystalline features are more widespread yet challenging to account for. Here, we propose that biominerals whose crystal texture varies with depth are functionally graded materials. Using the exemplary case of the nacro-prismatic pearl oyster Pinctada margaritifera, we demonstrate systematic textural changes in a biogenic ceramic. This bivalve employs three synergistic mechanisms to generate a texture gradient across its outer calcitic shell layer. This prismatic layer transitions from an initially weakly-textured to a strongly-textured material. Such changes in texture cause a variation in Young's modulus normal to the shell, owing to the anisotropic mechanical properties of the composing crystallites. Based on finite-element simulations and indentation experiments on the bivalve shell, we conclude that such graded bioceramics yield intrinsic toughening properties similar to those found in compositionally-graded synthetic materials. Notwithstanding, the gradation concept of Pinctada margaritifera is unparalleled among synthetic materials as it rests solely upon elastic anisotropy, making oyster shells potential blueprints for future bioinspired functional materials and damage-resistant ceramics.
000905543 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000905543 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000905543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905543 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000905543 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000905543 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000905543 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000905543 7001_ $$0P:(DE-HGF)0$$aHarris, Joe$$b1
000905543 7001_ $$0P:(DE-HGF)0$$aBöhm, Corinna F.$$b2
000905543 7001_ $$0P:(DE-HGF)0$$aWang, Di$$b3
000905543 7001_ $$00000-0003-4953-150X$$aZavattieri, Pablo$$b4
000905543 7001_ $$0P:(DE-HGF)0$$aFeldner, Patrick$$b5
000905543 7001_ $$00000-0002-9562-1429$$aMerle, Benoit$$b6
000905543 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b7$$ufzj
000905543 7001_ $$00000-0003-0494-6795$$aHurle, Katrin$$b8
000905543 7001_ $$0P:(DE-HGF)0$$aLeupold, Simon$$b9
000905543 7001_ $$0P:(DE-HGF)0$$aHansen, Lars N.$$b10
000905543 7001_ $$0P:(DE-HGF)0$$aMarin, Frédéric$$b11
000905543 7001_ $$0P:(DE-Juel1)180863$$aWolf, Stephan E.$$b12$$eCorresponding author$$ufzj
000905543 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D1MA01031J$$gp. 10.1039.D1MA01031J$$n3$$p1527$$tMaterials advances$$v3$$x2633-5409$$y2022
000905543 8564_ $$uhttps://juser.fz-juelich.de/record/905543/files/d1ma01031j.pdf$$yOpenAccess
000905543 909CO $$ooai:juser.fz-juelich.de:905543$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000905543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b7$$kFZJ
000905543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180863$$aForschungszentrum Jülich$$b12$$kFZJ
000905543 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000905543 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
000905543 9141_ $$y2022
000905543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905543 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000905543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER ADV : 2022$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:05:08Z
000905543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:05:08Z
000905543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:05:08Z
000905543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER ADV : 2022$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-02-05
000905543 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-02-05
000905543 920__ $$lyes
000905543 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000905543 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000905543 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000905543 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000905543 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x4
000905543 9801_ $$aFullTexts
000905543 980__ $$ajournal
000905543 980__ $$aVDB
000905543 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000905543 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000905543 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000905543 980__ $$aI:(DE-588b)4597118-3
000905543 980__ $$aI:(DE-Juel1)IEK-9-20110218
000905543 980__ $$aUNRESTRICTED
000905543 981__ $$aI:(DE-Juel1)IET-1-20110218