001     905548
005     20250129092435.0
024 7 _ |a 10.5194/egusphere-egu21-11674
|2 doi
024 7 _ |a 2128/30418
|2 Handle
037 _ _ |a FZJ-2022-00789
041 _ _ |a English
100 1 _ |a Kretschmer, Erik
|0 0000-0001-8923-5516
|b 0
|e Corresponding author
111 2 _ |a EGU General Assembly
|g EGU2021
|c Vienna
|d 2021-04-19 - 2021-04-30
|w Austria
245 _ _ |a Balloon-borne GLORIA hyperspectral Limb and Nadir imager in the LWIR
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1642772206_11563
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The GLORIA-B (Gimballed Limb Observer for Radiance Imaging of the Atmosphere - Balloon) instrument is an adaptation of the very successful GLORIA-AB imaging Fourier transform spectrometer (iFTS) flown on the research aircrafts HALO and M55 Geophysica. The high spectral resolution in the LWIR (Long Wave Infrared) allows for the retrieval of temperature and of a broad range of atmospheric trace gases, with the goal to retrieve O3, H2O, HNO3, C2H6, C2H2, HCOOH, CCl4, PAN, ClONO2, CFC-11, CFC-12, SF6, OCS, NH3, HCN, BrONO2, HO2NO2, N2O5 and NO2. The radiometric sensitivity of the Balloon instrument is further increased in comparison with the GLORIA-AB instrument by having two detector channels on the same focal plane array, while keeping the same concept of a cooled optical system. This system improvement was achieved with minimal adaptation of the existing optical system.

The high spatial and temporal resolution of the instrument is ensured by the imaging capability of the Fourier transform spectrometer while stabilizing the line-of-sight in elevation with the instrument and in azimuth with the balloon gondola. In a single measurement lasting 13 seconds, the atmosphere can be sounded from mid-troposphere up to flight altitude, typically 30 km, with a vertical resolution always better than 1 km for most retrieved species; a spatial resolution up to 0.3 km can be achieved in favourable conditions. Temperature retrieval precision between 0.1 and 0.2 K is expected. A spectral sampling up to 0.0625 cm-1 can be achieved.

The first flight of GLORIA-B shall take place during the late-summer polar jet turn-around at Kiruna/ESRANGE. This flight is organised in the frame of the HEMERA project and was scheduled for summer 2020, but was ultimately postponed to summer 2021. Beyond qualification of the first balloon-borne iFTS, the scientific goals of the flight are, among others, the quantification of the stratospheric bromine budget and its diurnal evolution by measuring vertical profiles of BrONO2 in combination with BrO observations by the DOAS instrument of University Heidelberg on the same platform.


536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Friedl-Vallon, Felix
|0 0000-0003-2016-2800
|b 1
700 1 _ |a Gulde, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Höpfner, Michael
|0 0000-0002-4174-9531
|b 3
700 1 _ |a Johansson, Sören
|0 0000-0002-9642-1955
|b 4
700 1 _ |a Kleinert, Anne
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Maucher, Guido
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 7
700 1 _ |a Nordmeyer, Hans
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Piesch, Christof
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 10
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 11
700 1 _ |a Schardt, Georg
|0 P:(DE-Juel1)133933
|b 12
700 1 _ |a Schönfeld, Axel
|0 P:(DE-Juel1)129152
|b 13
700 1 _ |a Ungermann, Jörn
|0 P:(DE-Juel1)129105
|b 14
700 1 _ |a Wetzel, Gerald
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.5194/egusphere-egu21-11674
856 4 _ |u https://meetingorganizer.copernicus.org/EGU21/EGU21-11674.html
856 4 _ |u https://juser.fz-juelich.de/record/905548/files/EGU21-11674-print.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905548
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0001-8923-5516
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-2016-2800
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-4174-9531
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-9642-1955
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)133933
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)129152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129105
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21