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Abstract
Gaussian processes (Kriging) are interpolating data-driven models that are frequently
applied in various disciplines. Often, Gaussian processes are trained on datasets and
are subsequently embedded as surrogate models in optimization problems. These
optimization problems are nonconvex and global optimization is desired. However,
previous literature observed computational burdens limiting deterministic global opti-
mization toGaussian processes trained on fewdata points.Wepropose a reduced-space
formulation for deterministic global optimization with trained Gaussian processes
embedded. For optimization, the branch-and-bound solver branches only on the free
variables and McCormick relaxations are propagated through explicit Gaussian pro-
cess models. The approach also leads to significantly smaller and computationally
cheaper subproblems for lower and upper bounding. To further accelerate convergence,
we derive envelopes of common covariance functions for GPs and tight relaxations of
acquisition functions used in Bayesian optimization including expected improvement,
probability of improvement, and lower confidence bound. In total, we reduce com-
putational time by orders of magnitude compared to state-of-the-art methods, thus
overcoming previous computational burdens. We demonstrate the performance and
scaling of the proposed method and apply it to Bayesian optimization with global
optimization of the acquisition function and chance-constrained programming. The
Gaussian process models, acquisition functions, and training scripts are available
open-source within the “MeLOn—Machine LearningModels forOptimization” tool-
box (https://git.rwth-aachen.de/avt.svt/public/MeLOn).
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1 Introduction

A Gaussian process (GP) is a stochastic process where any finite collection of ran-
dom variables has a multivariate Gaussian distribution; they can be understood as
an infinite-dimensional generalization of multivariate Gaussian distributions [66].
The predictions of GPs are Gaussian distributions that provide not only an estimate
but also a variance. GPs originate from geostatistics [46] and gained popularity for
the design and analysis of computer experiments (DACE) since 1989 [68]. Further-
more, GPs are commonly applied as interpolating surrogate models across various
disciplines including biotechnology [13,25,29,54,82], chemical engineering [14,22–
24,27,34,52], chemistry [1,69], and deep-learning [74]. Note that GP regression is also
often referred to as Kriging. In many applications, GPs are trained on a data set and
are subsequently embedded in an optimization problem, e.g., to identify an optimal
operating point of a process. Moreover, many derivative-free solvers for expensive-
to-evaluate black-box functions actually train GPs and optimize their predictions
(e.g., Bayesian optimization algorithms [12,40,72,82] and other adaptive sampling
approaches [9,10,20,22–24,27]). In Bayesian optimization, the optimum of an acqui-
sition function determines the next sampling point [72]. The vast majority of these
optimizations have been performed by local solution approaches [44,88] and a few by
stochastic global optimization methods [12]. Our contribution focuses on the deter-
ministic global solution of optimization problems with trained GPs embedded and on
applications in process systems engineering.

GPs are commonly used to learn the input-output behavior of unit operations
[14,15,42,43,48,63,64], complete flowsheets [33], or thermodynamic property rela-
tions from data [51]. Subsequently, the trained GPs are often combined with nonlinear
mechanistic process models leading to hybrid mechanistic and data-driven models
[31,41,60,83] which are optimized. Many of the previous works on optimization with
GPs embedded rely on local optimization techniques. Caballero and Grossmann, for
instance, train GPs on data obtained from a rigorous divided wall column simula-
tion. Then, they iteratively optimize the operation of the column (modeled by GPs)
using SNOPT [30], sample new data at the solution point, and update the GPs [14,15].
Later, Caballero and co-workers extend this work to distillation sequence superstruc-
ture problems [63,64]. In [63], the authors solve the resulting mixed-integer nonlinear
programs (MINLPs) using a local solver in GAMS. Therein, the GP estimate is com-
puted via an external function inMatlabwhich leads to a reduced optimization problem
size visible to the local solver in GAMS. However, all these local methods have the
drawback that they can lead to suboptimal solutions, because the resulting optimization
problems are nonconvex. This nonconvexity is induced by the covariance functions of
the GPs as well as often the mechanistic part of the hybrid models.
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Deterministic global optimization can guarantee to identify globally optimal solu-
tions within finite time to a given nonzero tolerance [36]. In a few previous studies,
deterministic global optimizationwithGPs embeddedwas done using general-purpose
global solvers. For instance, in the black-box optimization algorithms ALAMO [20]
and ARGONAUT [9], GPs are included as surrogate models and are optimized using
BARON [79] and ANTIGONE [57], respectively. However, computational burdens
were observed that limit applicability, e.g., in terms of the number of training points.
Cozad et al. [20] state that GPs are accurate but “difficult to solve using provable
derivative-based optimization software”. Similarly, Boukouvala and Floudas [9] state
that the computational cost becomes a limiting factor because the number of nonlin-
ear terms of GPs equals the product of the number of interpolated points (N ) and
the dimensionality (D) of the input domain. More recently, Keßler et al. [42,43] opti-
mized the design of nonideal distillation columns by a trust-region approach with GPs
embedded. Therein, optimization problems with GPs embedded are solved globally
using BARON [79] within relatively long CPU times (102–105 CPU seconds on a
personal computer).

As mentioned earlier, Quirante et al. [63] call an external Matlab function to com-
pute GP estimates with a local solver in GAMS. As an alternative approach, they also
solve the problem globally using BARON in GAMS by providing the full set of GP
equations as equality constraints. This leads to additional intermediate optimization
variables besides the degrees of freedom of the problem. Similar to other studies, they
observe that their formulation is only practical for a small number of GP surrogates
and training data points to avoid large numbers of variables and constraints [63]. We
refer to the problem formulation where the GP is described by equality constraints
and additional optimization variables as a full-space (FS) formulation. It is commonly
used inmodeling environments, e.g., GAMS, that interface with state-of-the-art global
solvers such as ANTIGONE [57], BARON [79], and SCIP [50].

An alternative to the FS is a reduced-space (RS) formulation where some optimiza-
tion variables are eliminated using explicit constraints. This reduced problem size leads
to a lower number of variables for branching as well as potentially smaller subprob-
lems. The former has some similarity to selective branching [28] (c.f. discussion in [4]).
The exact size of the subproblems for lower bounding and bound tightening depends
on the method for constructing relaxations. In particular, when constructing relax-
ations in the RS using McCormick [53], alphaBB [2] or natural interval extensions,
the resulting lower bounding problems are much smaller compared to the auxiliary
variable method (AVM) [73,80]. Therefore, any global solver can in principle handle
RS but some methods for constructing relaxations appear more promising to benefit
from the RS [4]. We have recently released the open-source global solver MAiNGO
[7] which uses theMC++ library [16] for automatic propagation of McCormick relax-
ations through computer code [58]. We have shown that the RS formulation can be
advantageous for flowsheet optimization problems [5,6] and problems with artificial
neural networks embedded [37,65,70]. In the context of Bayesian optimization, Jones
et at. [40] develop valid overestimators of the expected improvement (EI) acquisi-
tion function in the RS. However, their relaxations rely on interval extensions and
optimization-based relaxations limited to a specific covariance function; they do not
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derive envelopes. Furthermore, they do not provide convex underestimators which are
in general necessary to embed GPs in optimization problems.

The main contribution of this work is the efficient deterministic global optimiza-
tion of optimization problems with GPs embedded. We develop a RS formulation for
optimization problems with GPs embedded. The performance of the proposed method
is analyzed in an extensive computational study by solving about 90,000 optimiza-
tion problems. The proposed RS outperforms a FS formulation for problems with GPs
embedded by speedup factors of several magnitudes.Moreover, this speedup increases
with the number of training points. To further accelerate convergence, we derive and
implement envelopes of covariance functions for GPs and tight relaxations of acquisi-
tion functions, which are commonly used in Bayesian optimization. Finally, we solve a
chance-constrained optimization problem with GPs embedded and we perform global
optimization of an acquisition function. The GP training methods and models are
provided as an open-source toolbox called “MeLOn—Machine Learning Models for
Optimization” under the Eclipse public license [71]. The resulting optimization prob-
lems are solved using our global solver MAiNGO [7]. Note that the MeLOn toolbox
is also automatically included as a submodule in our new MAiNGO release.

2 Optimization problem formulations

In the simplest case, which is common in the literature, the (scaled) inputs of a GP
are the free variables of the optimization problem with x ∈ X̃ = [xL , xU ]. For given
x, the dependent (or intermediate) variables z can be computed by the solution of
h(x, z) = 0, h : X̃ × R

nz → R
nz . In the case of GP models, we aim to include the

estimate (mD) and variance (kD) in the optimization. As will be shown in Sect. 3, we
can solve explicitly for mD and kD [c.f. Eqs. (1) and (2)].

The realization of the objective function f depends on the application. In many
applications, it depends on the estimate of the GP, i.e., f (mD) (c.f. Sect. 6.1). In
Bayesian optimization, the objective function is called the acquisition function and
usually depends on the estimate and variance of theGP, i.e., f (mD, kD) (c.f. Sect. 6.3).
Finally, additional constraints might depend on the inputs of the GP, its estimate,
and variance, i.e., g(x,mD, kD) ≤ 0. In more complex cases, multiple GPs can be
combined in one optimization problem (c.f. Sect. 6.2).

In the following, we describe two optimization problem formulations for problems
with trained GPs embedded: the commonly used FS formulation in Sect. 2.1 and the
RS formulation in Sect. 2.2. Both problem formulations are exact reformulations in
the sense of Liberti et al. [47], meaning that they have the same local and global
optima. The equivalence is shown in “Appendix A” of [4]. However, the formulation
significantly affects problem size and performance of global optimization solvers.

2.1 Full-space formulation

In the FS formulation, the nonlinear equations h(x, z) = 0 are provided as equality
constraints and the intermediate dependent variables z ∈ Z are optimization variables.
A general FS problem formulation is:

123



Deterministic global optimization with Gaussian processes… 557

min
x∈X̃ ,z∈Z

f (x, z) (FS)

s.t. h(x, z) = 0, g(x, z) ≤ 0

In general, there exist multiple valid FS formulations for optimization problems. In
Sect. 3 of the electronic supplementary information (ESI), we provide a representative
FS formulation for the case where the estimate of a GP is minimized. This is also the
FS formulation that we use in our numerical examples (c.f., Sect. 6.1).

2.2 Reduced-space formulation

In the RS formulation, the equality constraints are solved for the intermediate vari-
ables and substituted in the optimization problem (c.f. [5]). A general RS problem
formulation in the context of optimization with a GP embedded is:

min
x∈X̃

f (mD(x), kD(x)) (RS)

s.t. g(x,mD(x), kD(x)) ≤ 0

Herein, the Branch-and-Bound (B&B) solver operates only on the free variables x and
no equality constraints are visible to the solver. In GPs, the estimate and variance are
explicit functions of the input [Eqs. (1) and (2)]. Thus, we can directly formulate a RS
formulation. The RS formulation effectively combines those equations and hides them
from the B&B algorithm. This results in a total number of D optimization variables,
zero equality constraints, and no additional optimization variables z. Thus, the RS
formulation requires only bounds on x.

Note that the direct substitution of all equality constraints is not always possible
when multiple GPs are combined with mechanistic models, e.g., in the presence of
recycle streams. Here, a small number of additional optimization variables and corre-
sponding equality constraints can remain in the RS formulation [5]. As an alternative,
relaxations for implicit functions can also be derived [76,86]. Moreover, we have pre-
viously observed that a hybrid between RS and FS formulation can be more efficiently
solvable for some optimization problems [6]. In this work, we compare the RS and
the FS formulation and do not consider any hybrid problem formulations.

3 Gaussian processes

In this section, GPs are briefly introduced (c.f. [66]). We first describe the GP prior
distribution, i.e., the probability distribution before any data is taken into account.
Then, we describe the posterior distribution, which results from conditioning the prior
on training data. Finally, we describe how hyperparameters of the GP can be adapted
to data by a maximum a posteriori (MAP) estimate.
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3.1 Prior

A GP prior is fully described by its mean function m(x) and positive semi-definite
covariance function k(x, x′) (also known as kernel function). We consider a noisy
observation y from a function f̃ (x)with y(x):= f̃ (x)+εnoise, whereby the output noise
εnoise is independent and identically distributed (i.i.d.) with εnoise ∼ N (0, σ 2

noise). We
say y is distributed as a GP, i.e., y ∼ GP(m(x), k(x, x′)) with

m(x):=IE
[
f̃ (x)

]
,

k(x, x′):=IE
[
(y(x) − m(x)) (y(x′) − m(x))T

]
.

Without loss of generality, we assume that the prior mean function is m(x) = 0. This
implies that we train the GP on scaled data such that the mean of the training outputs
is zero. A common class of covariance functions is the Matérn class.

kMatérn(x, x′):=σ 2
f
21−ν

Γ (ν)

(√
2νr

)ν

Kν

(√
2νr

)
,

where σ 2
f is the output variance, r :=

√
(x − x′)TΛ (x − x′) is a weighted Euclidean

distance, Λ:=diag(λ21, · · · , λ2i , · · · λ2nx ) is a length-scale matrix with λi ∈ R, Γ (·)
is the gamma function, and Kν(·) is the modified Bessel function of the second
kind. The smoothness of Matérn covariance functions can be adjusted by the pos-
itive parameter ν. When ν is a half-integer value, the Matérn covariance function
becomes a product of a polynomial and an exponential [66]. Common values for ν

are 1/2, 3/2, 5/2, and ∞, i.e., the most widely-used squared exponential covariance
function, k′

SE (r):= exp
(− 1

2 r2
)
. We derive envelopes of these covariance functions

in Sect. 4.1 and implement them within MeLOn [71]. Also, a noise term, σ 2
n · δ(x, x′),

can be added to any covariance function where σ 2
n is the noise variance and δ(x, x′)

is the Kronecker delta function. The hyperparameters of the covariance function are
adjusted during training and are jointly noted as θ = [λ1, ..., λd , σ f , σn]. Herein, a
log-transformation is common to prevent negative values during training.

3.2 Posterior

The GP posterior is obtained by conditioning the prior on observations. We consider
a set of N training inputs X = {x(D)

1 , ..., x(D)
N } where x(D)

i = [x (D)
i,1 , ..., x (D)

i,D ]T is
a D-dimensional vector. Note that we use the superscript (D) to denote the training
data. The corresponding set of scalar observations is given by Y = {y(D)

1 , ..., y(D)
N }.

Furthermore, we define the vector of scalar observations y = [y(D)
1 , ..., y(D)

N ]T ∈ R
N .

The posterior GP is obtained by Bayes’ theorem:

f̃ (x) ∼ GP(m(x), k(x, x′)|X ,Y) = N (
mD(x), kD(x, x′)

)
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with

mD(x) = Kx,X
(
KX ,X

)−1 y, (1)

kD(x) = Kx,x − Kx,X
(
KX ,X

)−1 KX ,x, (2)

where the covariance matrix of the training data is given by KX ,X := [
k(xi , x j )

] ∈
R

N×N , the covariance vector between the candidate point x and the training data

is given by Kx,X :=
[
k(x, x(D)

1 ), ..., k(x, x(D)
N )

]
∈ R

1×N , KX ,x = Kx,X T , and

Kx,x :=k(x, x). Equations (1) and (2) describe essentially the predictions of a GP and
are implemented within MeLOn.

3.3 Maximum a posteriori

In order to find appropriate hyperparameters θ for a given problem, we use a MAP
estimate which is known to be advantageous compared to the maximum likelihood
estimation (MLE) on small data sets [77]. Using the MAP estimate, the hyperparame-
ters are identified by maximizing the probability that the GP fits the training data, i.e.,
θopt:=argmaxθ P (θ |X ,Y). Analytical expressions forP (θ |X ,Y) and its derivatives
w.r.t. the hyperparameters can be found in the literature [66]. We provide a Matlab
training script in MeLOn that is based on our previous work [12]. Therein, we assume
an independent Gaussian distribution as a prior distribution on the log-transformed
hyperparameters, i.e., θi ∼ N (

μi , σ
2
i

)
. The implementation of the training is effi-

cient through the pre-computation of squared distances, the Cholesky decomposition
for computing the inverse of the covariance matrix, and a two-step training approach
that searches first globally and then locally [12].

4 Convex and concave relaxations

The construction of relaxations, i.e., convex function underestimators (Fcv) and
concave function overestimators (Fcc), is essential for B&B algorithms. In our open-
source solver MAiNGO, we use the (multivariate) McCormick method [53,81] to
propagate relaxations and their subgradients [58] through explicit functions using the
MC++ library [16]. However, theMcCormickmethod often does not provide the tight-
est possible relaxations, i.e., the envelopes. In this section, we derive tight relaxations
or envelopes of functions that are relevant for GPs and Bayesian optimization. The
functions and their relaxations are implemented in MC++. When using these intrinsic
functions and their relaxations in MAiNGO, the (multivariate) McCormick method is
only used for the remaining parts of the model. Note that the derived relaxations are
used within MAiNGO while BARON does not allow for implementation of custom
relaxations or piecewise defined functions.

123



560 A. M. Schweidtmann et al.

4.1 Covariance functions

The covariance function is a key element of GPs. When embedding trained GPs into
optimization problems, the covariance function occurs N times because it is used in
the covariance vector between the candidate point x and the training data, i.e., Kx,X =[
k(x, x(D)

1 ), ..., k(x, x(D)
N )

]
∈ R

1×N . Note that the covariancematrix KX ,X depends

only on training data and is thus a parameter during the optimization. Thus, tight
relaxations of the covariance functions are highly desirable. In this subsection, we
derive envelopes for common Matérn covariance functions. We consider univariate
covariance functions, i.e., kν : R → R, with input d = (x − x′)TΛ (x − x′) ≥ 0.
This is possible because we consider stationary covariance functions that are invariant
to translations in the input space. Common Matérn covariance functions use ν =
1/2, 3/2, 5/2 and ∞ and are given by:

kν=1/2(d):= exp
(
−√

d
)

, kν=3/2(d):=
(
1 + √

3
√
d
)

· exp
(
−√

3
√
d
)

kν=5/2(d):=
(
1 + √

5
√
d + 5

3
d

)
· exp

(
−√

5
√
d
)

, kSE (d):= exp

(
−1

2
d

)
,

where kSE is the squared exponential covariance function with ν → ∞. We find that
these four covariance functions are convex because their Hessian is positive semidefi-
nite. Thus, the convex envelope is given by Fcv(d) = k(d) and the concave envelope

by the secant Fcc(d) = sct(d) where sct(d) = k(dU )−k(dL )

dU−dL d + dU k(dL )−dLk(dU )

dU−dL on a

given interval [dL , dU ]. As the McCormick composition and product theorems pro-
vide weak relaxations of kν=3/2 and kν=5/2 (c.f. ESI Sect. 1), we implement these
functions and their envelopes in our library of intrinsic functions in MC++. Further-
more, natural interval extensions are not exact for kν=3/2 and kν=5/2. Thus, we also
provide exact interval bounds based on the monotonicity.

It should be noted that covariance functions are commonly given as a function
of the weighted Euclidean distance r = √

d. However, we chose to use d instead
for three main reasons: (1) x is usually a free variable of the optimization problem.
Thus, the computation of r would lead to potentially weaker relaxations for kν=5/2
and kSE . (2) The derivative of kν=3/2(·), kν=5/2(·), and kSE (·) is defined at d = 0
while the derivative of the square root function is not. (3) The covariance functions
k̂v=3/2 : r 
→ kv=3/2(r2), k̂v=5/2 : r 
→ kv=5/2(r2), and k̂SE : r 
→ kSE (r2) are
nonconvex in r , so deriving the envelopes would be nontrivial.

Finally, it can be noted that we did not derive envelopes of kMatérn(x, x′), because
the variable input dimensions pose difficulties in implementation and the multidimen-
sionality is a challenge for the derivation of envelopes. Nevertheless, the McCormick
composition theorem applied to kν(d(x, x′)) yields relaxations that are exact at the
minimum of kMatérn because the natural interval extensions of the weighted squared
distance d are exact (c.f. [62]). This means that the relaxations are exact in Hausdorff
metric.
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Fig. 1 Illustration of the
envelope of the Gaussian PDF
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Function
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4.2 Gaussian probability density function

The PDF is used to compute the EI acquisition function and is given by φ : R → R

with

φ(x):= 1√
2π

· exp
(−x2

2

)
(3)

The Gaussian probability density function (PDF) is a nonconvex function for which
theMcCormick composition rule does not provide its envelopes. For one-dimensional
functions, McCormick [53] also provides a method to construct envelopes. We con-
struct the envelopes of PDF using this method and implement them in our library of
intrinsic functions. The envelope of the PDF is illustrated in Fig. 1 and derived in
“Appendix A.1”.

4.3 Gaussian cumulative distribution function

The Gaussian cumulative distribution function (CDF) is given by Φ : R → R with

Φ(x):=
∫ x

−∞
φ(t) dt =

1 + erf
(√

2x
2

)

2
. (4)

The envelopes of the error function are already available inMC++ as an intrinsic func-
tion and consequently the McCormick technique provides envelopes of the CDF (see
Fig. 2a in ESI). In contrast, the error function is not available as an intrinsic function
in BARON and a closed-form expression does not exist. Thus, a numerical approxi-
mation is required for optimization in BARON. Common numerical approximations
of the error function are only valid for x ≥ 0 and use point symmetry of the error
function. To overcome this technical difficulty in BARON, a big-M formulation with
additional binary and continuous variables is a possible workaround. However, this
workaround leads to potentially weaker relaxations (see Sect. 2 in the ESI).
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Fig. 2 Graph of the probability of improvement acquisition function (PI) as in Eq. (5) for fmin = 0 along
with the developed convex and concave relaxations. a On the interval [−2, 2] × [0, 10], the relaxations are
constructed on the basis of monotonicity properties of PI. b On the interval [1, 2] × [0, 1], the relaxations
are constructed on the basis of componentwise convexity properties via the methods of Meyer and Floudas
[56] and Najman et al. [61]. Note that the ranges of μ and σ are different in the two subfigures to highlight
the individual relaxations that are derived on different intervals. The ranges in a are such that they overlap
with all four sets I1-I4 defined in Sect. A.2, while the ranges in b lie within the set I4

4.4 Lower confidence bound acquisition function

The lower confidence bound (LCB) (upper confidence bound when considering max-
imization) is an acquisition function with strong theoretical foundation. For instance,
a bound on its cumulative regret, i.e., a convergence rate for Bayesian optimization,
for relatively mild assumptions on the black-box function is known [75]. It is given
by LCB : R × R≥0 → R with

LCB(μ, σ ):=μ − κ · σ

with a parameter κ ∈ R>0. LCB has not been popular in engineering applications as
it requires an additional tuning parameter κ and leads to heavy exploration when a
rigorous value for κ is chosen [75]. Recently, LCB has gainedmore popularity through
the application as a policy in deep reinforcement learning, e.g., by DeepMind [59].
LCB is a linear function and thus McCormick relaxations are exact.

4.5 Probability of improvement acquisition function

Probability of improvement (PI) computes the probability that a prediction at x is below
a given target fmin, i.e., P̃I(x) = P ( f (x) ≤ fmin). When the underlying function is
distributed as a GP with mean μ and variance σ , the PI is given by PI : R×R≥0 → R

with

PI(μ, σ ):=

⎧
⎪⎪⎨

⎪⎪⎩

Φ
(

fmin−μ
σ

)
, σ > 0,

0, σ = 0, fmin ≤ μ,

1, σ = 0, fmin > μ.

(5)
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The PI acquisition function is neither convex or concave over its entire domain.
However, as analyzed in Sect. A.2, there are parts of its domain over which the func-
tion is componentwise convex or convex with respect to σ or μ. For componentwise
convex or concave functions, there exist methods for constructing tight relaxations.
[56] introduced a method for constructing concave relaxations for componentwise
convex functions (or vice versa). In particular, the concave envelope of a componen-
twise convex function is polyhedral [78], and thus the method of [56] amounts to
finding the correct combinations of corners of the considered interval box to construct
the facets of the polyhedral concave envelope. [61], in contrast, introduce a method
for constructing convex relaxations of componentwise convex functions that satisfy
a certain monotonicity condition on their first order partial derivatives (or, in case of
twice continuously differentiable functions, have mixed second-order partial deriva-
tives with constant sign over the box). For functions that are componentwise convex
with respect to some and concave with respect to other variables, [61] also show that
by taking the secant with respect to the concave (or convex) variables, one can obtain
a relaxation that is componentwise convex (or concave) with respect to all variables.
Using the aforementioned methods, this function can then be further relaxed to obtain
convex (or concave) relaxations.

We use these methods that exploit componentwise convexity along with techniques
that exploit monotonicity properties to construct tight relaxations of the PI acquisition
function. The procedure for constructing these relaxations is described in detail in
“Appendix A.2”. Examples for the resulting relaxations on two subsets of the domain
of PI are shown in Fig. 2.

4.6 Expected improvement acquisition function

EI is the acquisition function that is most commonly used in Bayesian optimization
[40]. It is defined as ẼI(x) = IE

[
max( fmin− f (x), 0)

]
. When the underlying function

is distributed as a GP, EI : R × R≥0 → R is given by

EI(μ, σ ):=

⎧
⎪⎪⎨

⎪⎪⎩

( fmin − μ) · Φ
(

fmin−μ
σ

)
+ σ · φ

(
fmin−μ

σ

)
, σ > 0

fmin − μ, σ = 0, μ < fmin

0 σ = 0, μ ≥ fmin

(6)

As noted by Jones et al. [40], EI is componentwise monotonic and thus, exact interval
bounds can easily be derived. In Sect. A.3, we show that EI is convex and we provide
its envelopes. As EI is not available as an intrinsic function in BARON, an algebraic
reformulation is necessary that uses Eq. (6) where Φ is substituted from Eq. (4) with
Eq. (1) in ESI and φ from Eq. (3). In addition, some workaround would be necessary
for σ = 0 (e.g., additional binary variable and big-M formulation).
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5 Implementation

The described methods are implemented in our open-source solver MAiNGO [7] and
the MeLOn toolbox [71]. The modeling interfaces of MAiNGO (currently either text-
based input or a C++ API) allow a convenient implementation of RS models without
having to eliminate variables symbolically. Instead, the sequential evaluation of model
equations can be expressed as in procedural programming paradigms.

MAiNGO implements a spatial B&B algorithm enhanced with some features for
range reduction [32,49,67] and a multi-start heuristic. A directed acyclic graph rep-
resentation of the model is constructed using the MC++ library [16] and evaluated in
different arithmetics: We use automatic differentiation via FADBAD++ [3] to obtain
first and second derivatives of functions and provide them to the desired local solver.
Currently, MAiNGO supports local solvers found in the NLopt package [39], IPOPT
and Knitro. These local solvers can be used for pre-processing and solving the upper
bounding problems. In the presented manuscript, we use SLSQP [45] in the pre-
processing and in the upper bounding. During pre-processing, a simple multistart
heuristic initializes the first local search at the center point of the variable ranges.
Subsequent local searches are initialized randomly within the variable ranges.

MAiNGO constructs (multivariate) McCormick relaxations of factorable functions
[53,81]. The convex and concave relaxations together with their subgradients [58]
are constructed through the MC++ library [16]. The necessary interval extensions
are provided through FILIB++ [35]. MAiNGO currently supports CPLEX [38] and
CLP [19] as linear programming solvers for lower bounding. In this work, the convex
relaxations of the objective and the constraints are linearized at the center point of
each node. Subsequently, CPLEX [38] solves the resulting linear problems for lower
bounding. MAiNGO can also be run in parallel on multiple cores through MPI. For a
fair comparison, we run all optimizations on a single core in this work.

TheGPmodels, acquisition functions, and training scripts are available open-source
within the MeLOn toolbox [71] and the relaxations of the corresponding functions are
available through the MC++ library used by MAiNGO.

In order to installMAiNGO, please visit our public git repository at https://git.rwth-
aachen.de/avt.svt/public/maingo. Our machine learning toolbox MeLOn comes as a
submodule of MAiNGO and will be installed with MAiNGO. Currently, MAiNGO
can be run using our C++ interface or using our own modeling language called ALE
[26]. At the time of writing thismanuscript, the authors develop a newPython interface
for MAiNGO which will be available soon via pypi.

6 Numerical results

We now investigate the numerical performance of the proposed method on one core of
an Intel Xeon CPUwith 2.60 GHz, 128 GBRAMandWindows Server 2016 operating
system. We present three case studies. We use MAiNGO version v0.2.1 and BARON
v19.12.7 through GAMS v30.2.0 to solve different optimization problems with GPs
embedded on a single core. Note that we use CPLEX as a lower bounding solver in
both BARON and MAiNGO. In MAiNGO we use SLSQP [45] in the pre-processing
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and in the upper bounding. By default, BARON automatically selects NLP solvers
and may switch between different NLP solvers.

First, we illustrate the scaling of the method w.r.t. the number of training data
points on a representative test function. Herein, the estimate of the GP is optimized.
Second,we consider a chemical engineering case studywith a chance constraint,which
utilizes the variance prediction of a GP. Third, we optimize an acquisition function
that is commonly used in Bayesian optimization on a chemical engineering dataset.

6.1 Illustrative example and scaling of the algorithm

In the first illustrative example, the peaks function is learned by GPs. Then, the GP
predictions are optimized on X̃ = {x1, x2 ∈ R : − 3 ≤ x1, x2 ≤ 3}. The peaks
function is given by f peaks : R2 → R with

fpeaks(x1, x2)

:=3 (1 − x1)
2 · e−x21− (x2+1)2 − 10 ·

( x1
5

− x31 − x52

)
· e−x21−x22 − e−(x1+1)2−x22

3

The two-dimensional function has multiple suboptimal local optima and one unique
global minimizer at x∗ ≈ [0.228,−1.626]T with fpeaks(x∗) ≈ −6.551.

We generate various training data on X̃ using a Latin hypercube sampling of sizes
10, 20, 30,…, 500. Then, we train GPs with kν=1/2(d), kν=3/2(d), kν=5/2(d), and
kSE (d) covariance functions on the data. The parameters of the trained GPs are saved
in individual JSON files. After training, the JSON files are read by the solver and the
predictions of the GPs are minimized using the RS and FS formulation to locate an
approximation of the minimum of f peaks . We run optimizations in MAiNGO once
using the developed envelopes and once using standard McCormick relaxations. Due
to longCPU times,we run optimizations for the FS formulations only for up to 250 data
points in MAiNGO. The whole data generation, training, and optimization procedure
are repeated 50 times for each data set. Thus, we train a total of 10, 000 GPs and run
90, 000 optimization problems inMAiNGO.We also solve the FS and RS formulation
in BARON by automatically parsing the problem from our C++ implementation to
GAMS. This is particularly important in the RS as equations with several thousand
characters are generated. We solve the RS problem for up to 360 and the FS for up
to 210 data points in BARON due to the high computational effort. The optimality
tolerances are set to εabs. tol. = 10−3 and εrel. tol. = 10−3 and the maximum CPU time
is set to 1, 000 CPU seconds. The reported CPU times do not include any compilation
time in MAiNGO and BARON. Note that the MAiNGO code is just compiled once
for each problem class because the individual GPs are parameterized by JSON files.
Thus, no repeated compilation is necessary. The feasibility tolerances are set to 10−6.
The analysis in this section is based on results for the kν=5/2 covariance function. The
detailed results for the other covariance functions show qualitatively similar results
(c.f. ESI Sect. 4).Also, the results in this section are based on themedian computational
times of the 50 repetitions because the variations are comparably small. Boxplots that
illustrate the variance are provided in Sect. 4 of the ESI.
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Fig. 3 Comparison of the total CPU time for optimization, i.e., the sumof preprocessing time andB&B time,
of GPs with kν=5/2 covariance function. The plots show the median of 50 repetitions of data generation, GP
training, and optimization. Note that #points are incremented in steps of 10 and the lines are interpolations
between them

In the FS, this problem has D+ 2 · N + 2 equality constraints and 2 · D+ 2 · N + 2
optimization variables while the RS has D optimization variables and no equality
constraints. Note that for practical applications the number of training data points is
usually much larger than the dimension of the inputs, i.e., N 
 D. The full problem
formulation is also provided in ESI Sect. 3.

Figure 3 shows a comparison of the CPU time for optimization of GPs. For the
solver MAiNGO, Fig. 3a shows that RS formulation outperforms the FS formulation
by more than one order of magnitude and shows a more favorable scaling with the
number of training data points. For example, the speedup increases to a factor of
778 for 250 data points. Notably, the achieved speedup increases drastically with the
number of training data points (c.f. ESI Sect. 4). This is mainly due to the fact that the
CPU times for the FS formulations scale approximately cubically with the data points
(CPUFS w/ env(N ) = 1.053 ·10−4N 2.958 sec with R2 = 0.993) while the ones for the
RS scale almost linearly (CPURS w/ env(N ) = 0.0022 · N 1.156 sec with R2 = 0.995).

In general, the number of optimization variables can lead to an exponential growth
of the worst-case B&B iterations and thus runtime. In this particular case, the number
of B&B iterations is very similar for the FS and RS formulation (see Fig. 4a). Instead,
for the present problems the number of B&B iterations is more influenced by the use of
tight relaxations. Figure 4b shows that the CPU time per iteration increases drastically
with problem size in the FSwhile it increases onlymoderately in the RS. This indicates
that the solution time of the lower bounding, upper bounding, and bound tightening
subproblems scales favorably in the RS and that this is the main reason for speedup of
the RS formulation inMAiNGO. This is probably due to the smaller subproblem sizes
when using McCormick relaxations in the RS formulation (c.f. discussion in Sect. 1).

The use of envelopes of covariance functions also improves computational perfor-
mance (see Fig. 3a). However, this effect is approximately constant over the problem
size (c.f. Fig. 3 in ESI Sect. sec:globalspsgpspsoptimizationspsRelaxationsspsofsps
RelevantspsFunctionsspsforspsGPsspsandspsBayesianspsOptimization). In other
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Fig. 4 Comparison of number of B&B iterations of optimization problemswith GPs embeddedwith kν=5/2
covariance function. The plots show the median of 50 repetitions of data generation, GP training, and
optimization. Note that #points are incremented in steps of 10 and the lines are interpolations between them

words, the CPU time shows a similar trend for the cases with and without envelopes
in Fig. 3a. In the RS, the CPU time with envelopes takes on average 7.1% of the CPU
time without envelopes (≈ 14 times less). In the FS, the impact of the envelopes is less
pronounced, i.e., the CPU time w/ envelopes is on average 15.1% of the CPU time
w/o envelopes (≈ 6.6 times less). Figure 4a shows that the envelopes considerably
reduce the number of necessary B&B iterations. However, the relaxations do not show
a significant influence on the CPU time per iteration (see Fig. 4a).

The results of this numerical example show clearly that the development of tight
relaxations is more important for the RS formulation than for the FS. As shown in
Sect. 3.4.2 of [4], this effect can be explained by the fact that in RS, it is more likely
to have reoccurring nonlinear factors which can cause the McCormick relaxations to
become weaker (c.f. also the relationship to the AVM in this case explored in [81]).
However, in this study, the improvement in relaxations is outweighed by the increase
of CPU time per iteration when additional variables are introduced in the FS.

The RS formulation also performs favorably compared to the FS formulation in
the solver BARON (see Fig. 3). However, the differences between the CPU times are
less pronounced. In contrast to MAiNGO, the number of B&B iterations in the FS
and RS drastically increase with increasing number of training data points when using
BARON (c.f. Fig. 4 in ESI). Also, the time per B&B iteration is similar between RS
and FS. This is probably due to the AVM method for the construction of relaxations.
The AVM method introduces auxiliary variables for some factorable terms. Thus, the
size of the subproblems in BARON increases with the number of training data points
regardless of which of the two formulations is used.

The results of the optimizations also provide information about the ability of GP
surrogate models to approximate a function for optimization. The results show that
the solution point of the GP optimization problem approximately converges to the
optimumof the learned peaks function for all covariance functions. However, it is clear
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that some covariance functions lead to more accurate solution for the same number
of training data points in this particular case. In the ESI, we provide figures that show
the solution point and objective function value over the number of data points for
this problem (Figs. 8–11). Interestingly, the objective function value is overestimated
considerably for all problems.

6.2 Chance-constrained programming

Probabilistic constraints are relevant in engineering and science [18] and GPs have
been used in the previous literature to formulate chance constraints, e.g., in model
predictive control [11] or production planning [87].

As a second case study, we consider the N-benzylation reaction of α methylben-
zylamine with benzylbromide to form desired secondary (2 ◦) amine and undesired
tertiary (3 ◦) amine. We utilize an experimental data set consisting of 78 data points
from a robotic chemical reaction platform [69]. We aim to maximize the expected
space-time yield of 2 ◦ amine (2 ◦-STY) and ensure that the probability of a product
quality constraint satisfaction is above 95%. The 2 ◦-STY and yield of 3 ◦ amine impu-
rity (3 ◦-Y) aremodeled by individual GPs. Thus, we solve optimization problemswith
two GPs embedded. The chance-constrained optimization problem is formulated as
follows

min
x∈E − IE

[
fSTY(x)

]

s.t. P (
fimpurity(x) ≤ c

) ≥ 95%

Here, the objective is tominimize the negative of the expectedSTY.This corresponds to
minimizing the negative prediction of theGP, i.e.,−mD,2 ◦−STY. The chance constraint
ensures that the impurity is below a parameter c with a probability of 95%. This
corresponds to the constraint mD,3◦−Y + 1.96 · √

kD,3◦−Y ≤ c with c = 5.
The optimization is conducted with respect to four optimization variables: (1) the

primary (1◦) amine flow rate of the feed varying between 0.2 and 0.4mLmin−1, (2) the
ratio between benzyl bromide and 1◦ amine varying between 1.0 and 5.0, (3) the ratio
between solvent and 1◦ amine varying between 0.5 and 1.0, and (4) the temperature
varying between 110 and 150 ◦C.

As this problem is highly multimodal and difficult to solve, we increase the number
of local searches in pre-processing in MAiNGO to 500 and increase the maximum
CPU time to 24 hours. The computational performance of the different methods is
given in Table 1. The results show that none of the considered methods converged to
the desired tolerance within the time limit. The RS formulation in MAiNGO that uses
the proposed envelopes outperforms the other formulations and BARON solver as it
yields the smallest optimality gap. Note that the considered SLSQP solver does not
find any valid solution point in the FS in MAiNGO while feasible points are found
in the RS. This demonstrates that the RS formulation can also be advantageous for
local solvers. Note that when using IPOPT [84] with 500 multistart points in the FS
formulation in MAiNGO, it identifies a local optimum with f ∗ = −226.5 in the pre-
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Table 1 Numerical results of the N-benzylation reaction optimization with chance constraint (Sect. 6.2)

Solver CPU [s] Iter. UB LB Abs. gap

(FS) MAiNGO w/ Env. 86,400 26,761 N/A −3792 N/A

MAiNGO w/o Env. 86,400 20,795 N/A −1704.1 N/A

BARON 86,400 219,239 −226.5 −53,775.0 53,548.5

(RS) MAiNGO w/ Env. 86,400 1.6 · 106 −226.5 −244.8 18.3

MAiNGO w/o Env. 86,400 1.1 · 106 −226.5 −573.2 346.7

BARON 86,400 7927 −226.5 −56,394.0 56,167.5

The FS formulation has 330 optimization variables, 326 equality constraints, and 1 inequality constraint.
The RS formulation has 4 optimization variables, 0 equality constraints, and 1 inequality constraint. The
CPU time limit is 86,400 s

processing. In the ESI, we provide a brief comparison of a few pre-processing settings
for this case study.

The best solution of the optimization problem that we found is x1 = 0.40 min−1,
x2 = 1.0, x3 = 0.5, and x4 = 123.5 ◦C. At the optimal point, the predicted 2 ◦-STY is
226.5 kg m−3 h−1 with a variance of 17.1 while the predicted amine impurity is 4.2 %
with a variance of 0.17. The result shows that the probability constraint ensures a safety
margin between the predicted impurity and c = 5. Note that the chance constraint is
active at the optimal solution point.

6.3 Bayesian optimization

In the third case study, we consider the synthesis of layer-by-layer membranes.
Membrane development is a prerequisite for sustainable supply of safe drinking
water. However, synthesis of membranes is often based on try-and-error leading
to extensive experimental efforts, i.e., building and measuring a membrane in the
development phase usually takes several weeks per synthesis protocol. In this case
study, we plan to improve the retention of Na2SO4 salt of a recently developed
layer-by-layer nanofiltration membrane system. The optimization variables are the
sodium chloride concentration in the polyelectrolyte solution cNaCl ∈ [0, 0.5] gL−1,
the deposited polyelectrolyte mass mPE ∈ [0, 5] gm−2, and the number of layers
Nlayer ∈ {1, 2, 3, ..., 10}. The detailed description of the setup is given in the litera-
ture [55,65]. Overall, we utilize 63 existing data points from previous literature [55].
We identify a promising synthesis protocol based on the EI acquisition function by
solving:

min
x∈E − EI

(
mD(x), kD(x)

)

with x = [cNaCl ,mPE , Nlayer ]T . Thus, this numerical example corresponds to one
step of a Bayesian optimization setup for this experiment. Global optimization of
the acquisition function is particularly relevant due to inherent multimodality of the

123



570 A. M. Schweidtmann et al.

Table 2 Numerical results of the membrane synthesis optimization (Sect. 6.3)

Solver CPU [s] Iter. UB LB Abs. gap

(FS) MAiNGO w/ Env. 3802 25,995 −2.025 −2.027 0.002

(RS) MAiNGO w/ Env. 405 14,331 −2.025 −2.027 0.002

The FS formulation has 136 optimization variables and 133 equality constraints. The RS formulation has
3 optimization variables and no equality constraints

acquisition functions [44] and high cost of experiments. Note that the experimental
validation of this data point is not within the scope of this work.

The computational performance of the proposed method is summarized in Table 2.
Using the solverMAiNGO, theRS formulation converges approximately 9 times faster
to the desired tolerance compared to the FS formulation. Herein, we use the derived
tailored relaxations of the EI acquisition function and envelopes of the covariance
functions in both cases. Notably, the FS requires approximately 1.8 times the number
of B&B iterations compared to the RS formulation, which is much less than the overall
speedup. Thus, the results are in good agreement with the previous examples showing
that the reduction of CPU time per iteration in the RS has a major contribution to the
overall speedup. For this example, a comparison toBARON is omitted due to necessary
workarounds including several integer variables and function approximations for CDF
and EI (c.f., Sects. 4.3, 4.6).

The optimal solution point of the optimization problem is cNaCl = 0.362 gL−1,
mPE = 0 gm−2, and Nlayer = 4. The expected retention is 85.32 with a standard
deviation σ = 14.8. The expected retention is actually worse than the best retention in
the training data of 96.1. However, Bayesian optimization takes also the high variance
of the solution into account, i.e., it is also exploring the space. EI identifies an optimal
trade-off between exploration and exploitation.

7 Conclusions

We propose a RS formulation for the deterministic global solution of problems with
trained GPs embedded. Also, we derive envelopes of common covariance functions or
tight relaxations of acquisition functions leading to tight overall problem relaxations.

The computational performance is demonstrated on illustrative and engineering
case studies using our open-source global solver MAiNGO. The results show that the
number of optimization variables and equality constraints are reduced significantly
compared to the FS formulation. In particular, the RS formulation results in smaller
subproblems whose size does not scale with the number of training data points when
using McCormick relaxations. This leads to tractable solution times and overcomes
previous computational limitations. For example, we archive a speedup factor of 778
for a GP trained on 250 data points. The GP training methods and models are pro-
vided as an open-source module called “MeLOn—Machine Learning Models for
Optimization” toolbox [71].
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We thus demonstrate a high potential for future research and industrial applications.
For instance, global optimization of the acquisition function can improve the efficiency
of Bayesian optimization in various applications. It also allows to easily include inte-
ger decisions and nonlinear constraints in Bayesian optimization. Furthermore, the
proposed method could be extended to various related concepts such as multi-task
GPs [8], deep GPs [21], global model-predictive control with dynamic GPs [13,85],
and Thompson sampling [12,17]. Finally, the proposed work demonstrates that the RS
formulation may be advantageous for a wide variety of problems that have a similar
structure, including variousmachine-learningmodels, model ensembles,Monte-Carlo
simulation, and two-stage stochastic programming problems.
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ADerivations of convex and concave relaxations

For the sake of simplicity, we use the same symbols in each subsection for the corre-
sponding convex (Fcv) and concave (Fcc) relaxations. To solve the one-dimensional
nonlinear equations that arisemultiple times in the following,we useNewton’smethod
with 100 iterations and a tolerance of 10−9. If this is not successful, we run a golden
section search as a backup.

A.1 Probability density function of Gaussian distribution

In this subsection, the envelopes of the PDF are derived on a compact interval D =
[x L , xU ]. As the probability density function is one-dimensional, McCormick [53]
gives a method to construct its envelopes. The PDF is convex on ] − ∞,−1] and
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[1,∞[ and it is concave on [−1, 1]. Its convex envelope, Fcv : R → R, and concave
envelope, Fcc : R → R, are given by

Fcv(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(x), xU ≤ −1,

Fcv
2 (x), x L ≤ −1, −1 ≤ xU ≤ 1,

sct(x), −1 ≤ x L , xU ≤ 1,

Fcv
4 (x), −1 ≤ x L , xU ≥ 1,

Fcv
5 (x), x L ≤ −1, xU ≥ 1,

φ(x), x L ≥ 1

Fcc(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sct(x), xU ≤ −1,

Fcc
2 (x), x L ≤ −1, −1 ≤ xU ≤ 1,

φ(x), −1 ≤ x L , xU ≤ 1,

Fcc
4 (x), −1 ≤ x L ≤ 1, xU ≥ 1,

Fcc
5 (x), x L ≤ −1, xU ≥ 1,

sct(x), x L ≥ 1

where sct(x) = φ(xU )−φ(XL )

xU−x L
· (x − x L) + φ(x L). Fcc

2 : R → R is given by:

Fcc
2 (x) =

⎧
⎨

⎩

φ(xUc,2)−φ(x L )

xUc,2−x L
· (x − x L) + φ(x L), x ≤ xUc,2,

φ(x), x > xUc,2,

where xUc,2 = min(xU∗
c,2 , xU ) and xU∗

c,2 is the solution of dφ
dx

∣∣∣
x

= φ(x)−φ(x L )

x−x L
, x ∈

[−1, 0]. Fcv
2 : R → R is given by:

Fcv
2 (x) =

⎧
⎨

⎩

φ(x), x ≤ x Lc,2,
φ(xU−φ(x Lc,2))

xU−x Lc,2
· (x − x Lc,2) + φ(x Lc,2), x > x Lc,2,

where x Lc,2 = max(x L∗
c,2, x

L) and x L∗
c,2 is the solution of dφ

dx

∣∣∣
x

= φ(x)−φ(x L )

x−x L
, x ∈

[x L ,−1]. Fcc
4 : R → R is given by:

Fcc
4 (x) =

⎧
⎨

⎩

φ(x), x < x Lc,4,
φ(xU )−φ(x Lc,4)

xU−x Lc,4
· (x − x Lc,4) + φ(x Lc,4), x ≥ x Lc,4,

123



Deterministic global optimization with Gaussian processes… 573

where x Lc,4 = max(x L∗
c,4, x

L) and x L∗
c,4 is the solution of dφ

dx

∣∣
∣
x

= φ(x)−φ(x L )

x−x L
, x ∈

[0, xU ]. Fcv
4 : R → R is given by:

Fcv
4 (x) =

⎧
⎨

⎩

φ(xUc,4)−φ(xL )

xUc,4−xL
· (x − xL) + φ(xL), x ≤ xUc,4,

φ(x), x > xUc,4,

where xUc,4 = min(xU∗
c,4 , xU ) and xU∗

c,4 is the solution of
dφ
dx

∣∣∣
x

= φ(x)−φ(x L )

x−x L
on [x L ,−1]

if x L + xU < 0 or [1, xU ] if x L + xU > 0. The case x L + xU = 0 is symmetrical
and handled separately to avoid numerical issues in Newton. Fcc

5 : R → R is given
by a combination of Fcc

2 and Fcc
4 :

Fcc
5 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(xUc,2)−φ(x L )

xUc,2−x L
· (x − x L) + φ(x L), x ≤ xUc,2,

φ(x), xUc,2 < x < x Lc,4,
φ(xU )−φ(x Lc,4)

xU−x Lc,4
· (x − x Lc,4) + φ(x Lc,4), x ≥ x Lc,4,

Fcv
5 : R → R is given by:

Fcv
5 (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(xUc,5)−φ(x L )

xUc,5−x L
· (x − x L) + φ(x L), x L + xU ≥ 0, x ≤ xUc,5,

φ(x), x L + xU ≥ 0, x > xUc,5,

φ(x), x L + xU < 0, x ≤ x Lc,5,
φ(φ(xU−x Lc,5))

xU−x Lc,5
· (x − x Lc,5) + φ(x Lc,5), x L + xU < 0, x > x Lc,5,

where xUc,5 = min(xU∗
c,5 , xU ) and xU∗

c,5 is the solution of dφ
dx

∣∣∣
x

= φ(x)−φ(x L )

x−x L
on [x L , 0].

Further, x Lc,5 = max(x L∗
c,5, x

L) and x L∗
c,5 is the solution of dφ

dx

∣∣∣
x

= φ(x)−φ(x L )

x−x L
on

[0, xU ].

A.2 Probability of improvement acquisition function

In this section, a tight relaxation of the PI acquisition function is derived. PI is con-
tinuous for all (μ, σ ) ∈ R × [0,∞[ \ {(0, 0)}, since limx→+∞ Φ(x) = 1 and
limx→−∞ Φ(x) = 0.

A.2.1 Monotonicity

From the gradient of PI on R × (0,∞),

∇PI(μ, σ ) = − 1

σ 2 · √
2π

· exp
(

− ( fmin − μ)2

2 · σ 2

) [
σ

( fmin − μ)

]
,
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Table 3 componentwise
convexity properties of PI over
subsets of its domain

Subset componentwise property

I1 Concave w.r.t. μ Convex w.r.t. σ

I2 Convex w.r.t. μ Concave w.r.t. σ

I3 Concave w.r.t. μ Concave w.r.t. σ

I4 Convex w.r.t. μ Convex w.r.t. σ

where fmin is a given target, we identify the following monotonicity properties:

– PI is monotonically decreasing with respect to μ.
– If μ < fmin then PI is monotonically decreasing with respect to σ .
– If μ ≥ fmin then PI is monotonically increasing with respect to σ (recall that
PI( fmin, 0) = 0, and PI( fmin, σ ) = 0.5 ∀σ ∈ ]0,∞[ ).

These properties can be used to obtain exact interval bounds on the function values of
PI. Furthermore, they can be exploited to construct relaxations as described in Sect.
A.2.3.

A.2.2 Componentwise convexity

The Hessian of PI on R × (0,∞[ is given by

∇2PI(μ, σ ) =
⎡

⎣
− fmin−μ

σ 3 − ( fmin−μ)2−σ 2

σ 4

− ( fmin−μ)2−σ 2

σ 4
( fmin−μ)·((2σ 2− fmin−μ

)2
)

σ 5

⎤

⎦ · 1√
2π

· e− ( fmin−μ)2

2σ2 .

The Hessian is indefinite and PI is therefore neither convex nor concave on its whole
domain. However, we find componentwise convexity properties on certain parts of the
domain, i.e., convexity with respect to one variable when the other is fixed. To this
end, we divide the domain into the following four sets:

– I1:={(μ, σ ) | μ ≤ fmin ∧ μ − fmin ≥ −√
2σ },

– I2:={(μ, σ ) | μ ≥ fmin ∧ μ − fmin ≤ +√
2σ },

– I3:={(μ, σ ) | μ ≤ fmin ∧ μ − fmin ≤ −√
2σ },

– I4:={(μ, σ ) | μ ≥ fmin ∧ μ − fmin ≥ +√
2σ }.

On these sets, PI has the componentwise convexity properties listed in Table 3.

A.2.3 Relaxations

We construct relaxations of PI over a given subset X = [μL, μU] × [σL, σU] of its
domain depending on which of the four sets I1-I4 contains the set X . If X ⊂ I1 ∪ I2,
we use the McCormick relaxations obtained by applying the multivariate composition
theorem [81] to the composition of the rational function fmin−μ

σ
with Φ (c.f. Eq. (5)),

since these are already very tight. IfX does not fully lie within I1∪ I2, theMcCormick
relaxations get increasingly weaker and we thus resort to other methods as described
in the following.
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If X ⊂ I4, PI is componentwise convex with respect to both variables. Therefore,
the concave envelope of PI over X consists of two planes anchored at the four corner
points of X and can be calculated as described by [56]. A tight convex relaxation can
be obtained using the method by [61]. Since the off-diagonal entries of the Hessian
have a constant sign over I4, a sufficient condition for this method is fulfilled (c.f.
Corollary 1 in [61]). An example for the resulting relaxation is shown in Fig. 2b.
Similarly, ifX ⊂ I3, PI is componentwise concave and we obtain its convex envelope
using the method by [56] and a tight concave relaxation using the method by [61].

If X ⊂ I2 ∪ I4, we construct relaxations exploiting the monotonicity properties
of PI. Since for all (μ, σ ) ∈ I2 ∪ I4 we have μ ≥ fmin, PI is thus monotonically
decreasing in μ and increasing in σ over X . Therefore, we can construct a convex
relaxation PIcv2,4 : X → [0, 1] as

PIcv2,4(μ, σ ):=max
(
f cv
σL(μ), f cv

μU(σ )
)

, (7)

where f cv
σL and f cv

μU are the convex envelopes of the univariate functions

fσL : [μL, μU] → [0, 1], μ 
→ PI(μ, σL)

and
fμU : [σL, σU] → [0, 1], σ 
→ PI(μU, σ ), (8)

respectively, i.e., they correspond to the function PI restricted to one-dimensional
facets ofX at σL andμU. Both f cv

σL(μ) and f cv
μU(σ ) are valid relaxations of PI because

of the monotonicity of PI over I2 ∪ I4. By taking the pointwise maximum in (7), we
obtain a tighter relaxation while preserving convexity. To compute f cv

σL and f cv
μU, we

can use the method described in Sect. 4 of [53] because they are one-dimensional
functions with a known inflection point. To apply this method, we typically need to
solve a one-dimensional nonlinear equation, which we do via Newton’s method. A
concave relaxation can be obtained analogously using concave envelopes of PI over
one-dimensional facets of X at σU and μL. If X ⊂ I1 ∪ I3, an analogous method can
be used since PI is monotonically increasing in both μ and σ .

In the most general case, X contains parts of all four sets I1-I4. In this case, we
can still obtain relaxations by exploiting monotonicity properties. In particular, we
compute a convex relaxation PIcv1−4 : X → [0, 1] as

PIcv1−4(μ, σ ):=max
(
f̃ cv
σL(μ), f cv

μU(σ )
)

, (9)

where f cv
μU is again the convex relaxation of the univariate function fμU as in (8),

which is still valid because PI is decreasing with respect to μ on its entire domain. In
contrast, the convex relaxation of the univariate function at σL as in (7) is not valid
because PI is not monotonic with respect to σ . Instead, in (9) it is replaced by the
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convex relaxation f̃ cv
σL of the univariate function f̃σL : [μL, μU] → [0, 1] with

f̃σL(μ):=
{
PI(μ, σL), μ ≥ fmin,

PI( fmin, σ
L) + PI( fmin,σ

L)−PI(μL,σU)

fmin−μL (μ − fmin) , otherwise.
(10)

To see that f̃ cv
σL is a valid relaxation of PI, we first note that by definition it is a

relaxation of f̃σL , so it suffices to show that f̃σL is in turn a relaxation of PI. The latter
is established in the following Lemma.

Lemma 1 Let PI be defined as in (5) and f̃σL as in (10). Then f̃σL(μ) ≤
PI(μ, σ ) ∀(μ, σ ) ∈ X :=[μL, μU] × [σL, σU].

Proof Consider first any fixed μ̂ such that μ̂ ≥ fmin. In this case, we have
f̃σL(μ̂) = PI(μ̂, σL) ≤ PI(μ̂, σ ) ∀σ ∈ [σL, σU] because of the monotonicity w.r.t
σ (c.f. Sect. A.2.1). Next, consider any μ̃ such that μ̃ < fmin. Note that this implies
μL < fmin. In this case, we have

f̃σL(μ̃) = PI( fmin, σ
L) + PI( fmin, σ

L) − PI(μL, σU)

fmin − μL (μ̃ − fmin)

= PI( fmin, σ
L)

μ̃ − μL

fmin − μL + PI(μL, σU)
fmin − μ̃

fmin − μL

≤ PI( fmin, σ
U)

μ̃ − μL

fmin − μL + PI(μL, σU)
fmin − μ̃

fmin − μL

≤ PI(μ̃, σU)

≤ PI(μ̃, σ ) ∀σ ∈ [σL, σU],

where the inequalities follow, in this order, from the monotonicity of PI with respect
to σ for μ ≥ fmin, its componentwise concavity with respect to μ for μ < fmin, and
its monotonicity with respect to σ for μ < fmin. ��

A.3 Expected improvement acquisition function

We now show that the EI acquisition function is convex. From the Hessian matrix of
EI on R × (0,∞)

∇2EI(μ, σ ) =
[

1
σ

−μ− fmin
σ 2

−μ− fmin
σ 2

(μ− fmin)
2

σ 3

]

· φ

(
−μ − fmin

σ

)
,

we find the eigenvalues 0 and (μ− fmin)
2+σ 2

σ 3 ·φ
(
−μ− fmin

σ

)
. As σ ≥ 0, EI(·, ·) is convex

and the envelopes can be constructed directly.
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