000905555 001__ 905555
000905555 005__ 20240712112907.0
000905555 0247_ $$2doi$$a10.1007/s11081-021-09608-0
000905555 0247_ $$2ISSN$$a1389-4420
000905555 0247_ $$2ISSN$$a1573-2924
000905555 0247_ $$2Handle$$a2128/31256
000905555 0247_ $$2altmetric$$aaltmetric:106406696
000905555 0247_ $$2WOS$$aWOS:000650093300002
000905555 037__ $$aFZJ-2022-00796
000905555 082__ $$a690
000905555 1001_ $$0P:(DE-HGF)0$$aSchweidtmann, Artur M.$$b0$$eCorresponding author
000905555 245__ $$aObey validity limits of data-driven models through topological data analysis and one-class classification
000905555 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2022
000905555 3367_ $$2DRIVER$$aarticle
000905555 3367_ $$2DataCite$$aOutput Types/Journal article
000905555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654253747_26706
000905555 3367_ $$2BibTeX$$aARTICLE
000905555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905555 3367_ $$00$$2EndNote$$aJournal Article
000905555 520__ $$aData-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn).
000905555 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000905555 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905555 7001_ $$0P:(DE-HGF)0$$aWeber, Jana M.$$b1
000905555 7001_ $$0P:(DE-HGF)0$$aWende, Christian$$b2
000905555 7001_ $$0P:(DE-HGF)0$$aNetze, Linus$$b3
000905555 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$ufzj
000905555 773__ $$0PERI:(DE-600)2018576-5$$a10.1007/s11081-021-09608-0$$p855–876$$tOptimization and engineering$$v23$$x1389-4420$$y2022
000905555 8564_ $$uhttps://juser.fz-juelich.de/record/905555/files/Schweidtmann2022_Article_ObeyValidityLimitsOfData-drive.pdf$$yOpenAccess
000905555 909CO $$ooai:juser.fz-juelich.de:905555$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905555 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000905555 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a TU Delft$$b0
000905555 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000905555 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000905555 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000905555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000905555 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000905555 9141_ $$y2022
000905555 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905555 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000905555 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-26$$wger
000905555 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905555 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000905555 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000905555 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPTIM ENG : 2021$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000905555 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000905555 920__ $$lyes
000905555 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000905555 9801_ $$aFullTexts
000905555 980__ $$ajournal
000905555 980__ $$aVDB
000905555 980__ $$aUNRESTRICTED
000905555 980__ $$aI:(DE-Juel1)IEK-10-20170217
000905555 981__ $$aI:(DE-Juel1)ICE-1-20170217