Hauptseite > Publikationsdatenbank > Obey validity limits of data-driven models through topological data analysis and one-class classification > print |
001 | 905555 | ||
005 | 20240712112907.0 | ||
024 | 7 | _ | |a 10.1007/s11081-021-09608-0 |2 doi |
024 | 7 | _ | |a 1389-4420 |2 ISSN |
024 | 7 | _ | |a 1573-2924 |2 ISSN |
024 | 7 | _ | |a 2128/31256 |2 Handle |
024 | 7 | _ | |a altmetric:106406696 |2 altmetric |
024 | 7 | _ | |a WOS:000650093300002 |2 WOS |
037 | _ | _ | |a FZJ-2022-00796 |
082 | _ | _ | |a 690 |
100 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Obey validity limits of data-driven models through topological data analysis and one-class classification |
260 | _ | _ | |a Dordrecht [u.a.] |c 2022 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1654253747_26706 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn). |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Weber, Jana M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wende, Christian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Netze, Linus |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 4 |u fzj |
773 | _ | _ | |a 10.1007/s11081-021-09608-0 |0 PERI:(DE-600)2018576-5 |p 855–876 |t Optimization and engineering |v 23 |y 2022 |x 1389-4420 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905555/files/Schweidtmann2022_Article_ObeyValidityLimitsOfData-drive.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:905555 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a TU Delft |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-26 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2021-01-26 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-26 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPTIM ENG : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|