001     905559
005     20250129092435.0
037 _ _ |a FZJ-2022-00800
041 _ _ |a English
100 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 0
|e Corresponding author
111 2 _ |a Small Satellite Conference
|c Logan, Utah
|d 2021-08-07 - 2021-08-12
|w USA
245 _ _ |a In-flight Reconfiguration with System-on-Module based Architectures for Science Instruments on Nanosatellites
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1642771095_18986
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a There is a great interest in cost-effective, reliable and state-of-the-art computing performance for science payloads on nanosatellite missions. Highly integrated system architectures combine reconfigurable System-on-Chip (SoC) devices, memory as well as peripheral interfaces in a single System-on-Module (SoM) and offer low resource requirements regarding power/mass, but moderate to high processing power capabilities. The major advantages of these architectures are flexibility, (re)programmability, modularity and module reuse. However, it is a challenge to use radiation sensitive SoM with COTS based memories devices in a low Earth orbit (LEO).In order to fulfill the requirements, we developed a remote sensing instrument for atmospheric temperature measurements with mitigation measures, using redundant memory devices and in-flight reconfiguration. The hardware is based on the Xilinx Zynq-7000 SoM with minimal amount of external components. A supervisor circuit is used to manage save booting from alternative and redundant memory devices and initiates event-triggered reconfiguration of the system. The approach distinguishes between programmable logic and processing system reconfiguration, and enables in-flight firmware updates in the event of errors changing measurement conditions.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
700 1 _ |a Rongen, Heinz
|0 P:(DE-Juel1)133931
|b 1
700 1 _ |a Clemens, Uwe
|0 P:(DE-Juel1)133875
|b 2
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 3
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 4
700 1 _ |a Olschewski, Friedhelm
|0 P:(DE-Juel1)177834
|b 5
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 6
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 7
856 4 _ |u https://digitalcommons.usu.edu/smallsat/2021/all2021/192/
909 C O |o oai:juser.fz-juelich.de:905559
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133875
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21