
Highlights:

– Nonsmooth DAE without approximation of complementarity constraints

by reformulation.

– Embedded NLP is replaced by its KKT conditions yielding a nons-

mooth DAE system.

– DAE solver provides adjoint sensitivities for optimization of upper-level

problem.

– Illustrative examples stemming from phase equilibrium assumption and

dynamic flux balance analysis approach.

– The accompanying software to the article is made available open-source.
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Abstract

Differential-algebraic equation systems with embedded optimization crite-

ria (DAEOs) arise in a number of applications, most prominently dynamic

models of separation processes based on phase equilibrium and microbial

transformation processes modeled via the dynamic flux balance analysis ap-

proach.

We consider the optimization of DAEOs. To this end, we first reformulate

the DAEO using first-order optimality conditions yielding a nonsmooth DAE

system. This solution approach tracks a stationary point of the embedded

optimization problem that may not be globally or locally optimal on the total

time horizon for non-convex problems.

We use adjoint sensitivity analysis for the resulting nonsmooth DAEs for
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gradient-based optimization in a direct single-shooting approach. We apply

the solution method to the optimization of a single flash unit, calculation of

an optimal start-up scenario of a rectification column, and the optimization

of biomass growth in a microbial transformation process.

Keywords: dynamic optimization, bilevel optimization, nonsmooth

dynamic systems, Karush-Kuhn-Tucker conditions, dynamic flux balance

analysis, dynamic phase equilibrium

1. Introduction

A differential-algebraic equation system with optimization criteria em-

bedded (DAEO) is a dynamic system where the solution of an embedded

optimization problem determines all or a fraction of the algebraic variables.

The motivations to use this modeling approach can be diverse. Among the

most important examples in process systems engineering is the dynamic mod-

eling of separation processes assuming thermodynamic equilibrium between

coexisting phases (e.g., vapor-liquid equilibrium). Phase equilibrium is found

at the (global) minimum of the Gibbs free energy [1, 21]. In this case, min-

imization of the Gibbs free energy leads to a differential-algebraic equation

(DAE) system with an embedded nonlinear program (NLP) [10, 3, 32], i.e.,

a DAEO. Another example is the dynamic flux balance analysis (DFBA) ap-

proach [20, 24, 35]. Here, the formulation of the stoichiometry of metabolic

reaction networks leads to a linear equation system that is often underdeter-

mined. Additional inequality constraints are imposed to narrow the possible

flux distributions inside the cell. The lack of knowledge with respect to the

flux distribution is overcome by assuming that the cells behave optimally
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with respect to some cell-specific optimization criterion such as maximum

cell growth. In this way, one particular flux distribution is obtained as the

solution of an embedded optimization problem with a linear or nonlinear ob-

jective function subject to linear equality and inequality constraints [20, 24].

Finally, the coupling of the intracellular fluxes to the dynamics of the reac-

tion medium yields a DAEO system. Hence, all DFBA models are DAEOs.

The DFBA modeling approach is particularly interesting as it allows sim-

ulation of microbial transformation processes under varying environmental

conditions [15, 11, 16].

In this work, we present the dynamic optimization of DAEOs. Mathe-

matically, this leads to a bilevel dynamic optimization problem. The DAEO

formulation comprises the lower level problem that is solved to determine the

algebraic variables. The upper level problem minimizes the cost function,

e.g., an economic objective for optimal control or a least-square formulation

in the context of parameter estimation.

Many popular approaches for optimization of DAEOs [30, 29, 15, 3, 6, 7, 5]

are based on a common first step, that is, the substitution of the embedded

optimization problem with its first-order optimality conditions, also known as

Karush-Kuhn-Tucker (KKT) conditions. The local nature of the KKT con-

ditions does not allow a conclusion about global optimality. Consequently,

the exact solution of the original DAEO is only guaranteed for a particular

class of embedded optimization problems (i.e., convex NLPs). Otherwise,

a stationary point is tracked that may be globally optimal, locally optimal

or even not optimal at all. In addition, it may change from a global opti-

mum to a local optimum during dynamic simulation. The KKT embedding
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reformulation introduces one complementarity condition for each inequality

constraint of the lower-level problem (i.e., gi ¨ λi “ 0; gi ě 0, λi ě 0, where gi

is the ith lower-level inequality1 and λi the respective Lagrange multiplier)

yielding a nonsmooth DAE system.

Based on this reformulation, the solution methods for solving the non-

smooth dynamic optimization problems may be divided into simultaneous

and sequential approaches [3]. The simultaneous optimization strategy is

based on full discretization of variables and equations leading to a single

large-scale NLP that can be solved by appropriate solvers such as IPOPT

[34]. In the context of DAEOs, the full discretization yields a mathemati-

cal program with complementarity constraints (MPCC) [3]. In their natural

form, these MPCCs are hard to solve by classical NLP solvers because the

complementarity constraints do not satisfy a constraint qualification such

as the linear independence constraint qualification (LICQ) or Mangasarian-

Fromovitz constraint qualification (MFCG) [3]. The MPCC can be approxi-

mated by reformulations to overcome this issue. A common approach is the

relaxation of the complementarity constraint (i.e., gi ¨ λi “ ε, ε ą 0) that

requires solving a sequence of NLPs with ε approaching zero [3]. Another

reformulation moves the complementarity conditions from the constraints to

the objective function [3]. This way, a violation of the complementarity con-

ditions is penalized. With an appropriate choice of the penalty function,

only a single NLP needs to be solved [3]. Using the simultaneous approach,

1Note that the inequality constraints gi depend on the variables and parameters of
the system, actually we have gi “ gipydptq,yaptq, t,pq, where ydptq, yaptq are the time-
dependent differential and algebraic variables, respectively, t is the time and p are time-
invariant parameters.
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Raghunathan et al. [30] consider the optimization of distillation columns

with binary and ternary mixtures in phase equilibrium using full discretiza-

tion based on Radau collocation, penalty-based reformulation of the MPCC

and an interior point method to solve the resulting NLP. Other contributions

apply the optimization method to the parameter estimation of fermentation

kinetics of Saccharomyces cerevisiae [29], to the optimization of fed-batch fer-

mentation strategy for S. cerevisiae [15], to the nonlinear model predictive

control of fed-batch process with S. cerevisiae [6], and to the optimization

of biopharmaceutical production in Pichia pastoris [7]. In these cases, the

DFBA approach is used to model the reaction kinetics leading to a DAEO.

The simultaneous solution method for optimization of DAEOs requires a

variable step-size discretization for an accurate detection of switching points

of the complementarity conditions [2]. However, this also increases the prob-

lem complexity. In addition, the size of the discretized NLP grows with

the number of complementarity conditions. The reformulated and relaxed

Gibbs free energy minimization can be formulated with a single complemen-

tarity condition (per equilibrium tray). In contrast, the number of those

conditions grows with the size of the metabolic network considered in the

DFBA approach making the simultaneous approach restrictive to small to

medium-scale metabolic networks [18]. To summarize, the limitations when

optimizing DAEOs using the simultaneous solution approach are (i) costly

detection of switching points of the complementarity conditions, and (ii) size

restriction with respect to the number of complementarity conditions.

To overcome these issues, we are interested in solving DAEO optimization

problems using the sequential approach that is based on the interaction of a
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numerical integration algorithm with an NLP solver. To this end, only the

control variables are discretized and the dynamic system is integrated using

a solver for nonsmooth DAEs. The values of the objective and constraints

and the respective gradients are passed to an NLP solver that updates the

control variable values. This iterative procedure is repeated until conver-

gence within a predefined optimality tolerance. The sequential approach

has been used in literature to optimize DAEOs as detailed in the following.

Ritschel et al. [31] use the sequential approach to solve two optimal control

problems based on a UV-flash formulation. To this end, they model the

vapor-liquid equilibrium (VLE) as a DAEO comprising the maximization of

entropy and use a reformulation based on the KKT conditions. Their study

is limited to the case where both phases are always present thereby avoiding

the nonsmoothness caused by the complementarity conditions. Caspari et al.

[5] solve optimization problems based on the thermodynamic equilibrium as-

sumption with vanishing and appearing phases by smoothing the complemen-

tarity constraint. In an approach to make parameter estimation available for

genome-scale DFBA models, Leppävuori et al. [18] use a sequential optimiza-

tion strategy based on direct solution of the embedded optimization problem

with an LP solver and calculation of sensitivities via differentiation of the

discretized equation system. While this tailored approach seems to work

for parameter estimation of genome-scale DFBA models, it suffers from the

known limitations of the direct solution approach. In particular, active set

changes cannot be tracked correctly [18] and attempted integration steps

may lead to infeasibility of the embedded LP [13]. Scott et al. [33] also use

the sequential approach for optimization of DAEOs to calculate optimal fed-
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batch scenarios for microbial transformation processes based on the DFBA

modeling approach. To circumvent the need for a nonsmooth integration

algorithm, they use a penalty formulation similar to the ones used in simul-

taneous optimization of MPCCs to eliminate the inequality constraints of the

lower-level problem [33]. They solve simulation and optimization examples

comprising DFBA models in gPROMS.

In this work, we build on the sequential approach to optimize DAEO

systems. We formulate first-order optimality conditions of the embedded

optimization problem to obtain a nonsmooth DAE system [26]. As previously

discussed, we cannot guarantee optimality of the lower level problem. Then,

we use our numerical framework [12] to solve the nonsmooth dynamic systems

and calculate the required gradients based on adjoint sensitivity analysis.

Finally, we use an NLP solver for optimization of the upper level problem.

We consider the exact nonsmooth system without any approximation by

reformulation. Thereby, no smoothing parameter has to be chosen and only

a single dynamic optimization problem needs to be solved.

The structure of this work is as follows. In the next section, we for-

mally introduce the DAEO formulation and briefly summarize its reformu-

lation yielding a nonsmooth DAE system. Furthermore, we describe how

the nonsmooth DAE is solved and the choice of an NLP solver for optimiza-

tion. The subsequent section presents three relevant case studies: dynamic

optimization of a single flash unit, optimal start-up scenario of a distilla-

tion column and optimal batch conditions for biomass growth in an aerobic

microbial transformation process based on the DFBA modeling approach.

Finally, we end with concluding remarks. The software for dynamic op-
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timization of DAEOs will be made available on the public git repository

http://permalink.avt.rwth-aachen.de/?id=646019.

2. Methods

2.1. Theoretical background and model formulation

We consider DAEOs of the following form

9ydptq “fpydptq,yaptq, t,pq, with ydpt0q “ yd,0ppq (1a)

yaptq P arg min
ŷaPRna

hpydptq, ŷa, t,pq (1b)

s.t. 0 “ gkpydptq, ŷa, t,pq, k “ 1, . . . , ne (1c)

0 ď gkpydptq, ŷa, t,pq, k “ ne`1, . . . , ng (1d)

where ydptq P Rnd and yaptq P Rna are the differential and algebraic vari-

ables, respectively; the differential equations are given by a function f :

Rnd ˆRna ˆ rt0, tf s ˆRnp Ñ Rnd ; the vector p P Rnp comprises all model pa-

rameters; tf is the final time and t P rt0, tf s is the independent time variable.

Note that additional algebraic equations and algebraic variables outside the

optimization problem are possible, if the additional algebraic variables can

formally be eliminated by means of the additional algebraic equations. Then,

they do not influence the solution method described below. For brevity, they

are not included in formulation (1). The algebraic variables are given as a

solution point of an embedded NLP comprising Eqs. (1b)–(1d), i.e., a vector

ya that satisfies the constraints and further minimizes an objective function

h : Rnd ˆ Rna ˆ rt0, tf s ˆ Rnp Ñ R. The functions f , h, gk, k “ 1, . . . ng are

assumed to be sufficiently smooth. What sufficiently smooth means depends
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on the maximal order κ of the employed numerical integrator and will be

further discussed in the next section.

We use first-order optimality conditions with time-dependent Lagrange

multipliers pλ1, . . . , λngq
T “ λptq P Rng to reformulate the DAEO (1) into

a nonsmooth DAE system [26]. With this approach some limitations arise.

First, the local optimality conditions do not allow a conclusion about global

optimality of the embedded optimization problem. Consequently, embed-

ded NLPs with multiple local optima should be treated with caution. In

addition, the solution of the embedded NLP may be non-unique, i.e., there

may be multiple solution points satisfying the KKT conditions. The non-

uniqueness arises particularly with embedded LPs. Possible remedies include

lexicographic optimization, i.e., sequentially solving multiple LPs [16, 9], or

reformulation into a strictly convex QP [26]. In addition, the algebraic equa-

tion system describing the time-dependent KKT conditions may become un-

solvable. An example of this case is the dynamic modeling of system in

liquid-liquid equilibrium [25]. However, for many problems of interest, it is

feasible for DAEOs to use KKT embedding as reformulation.

For the reformulation, we divide the total time horizon t P rt0, tf s into

open time intervals ptk´1, tkq, k “ 1, 2, . . . K, where tK “ tf , also called

stages. On each stage, the DAEO behaves smoothly, i.e., nonsmooth events

only occur at t1, . . . , tK´1. Note that we use superscripts to indicate the asso-

ciation with the respective stage, i.e., ykdptq refers to the differential variables

at time t P ptk´1, tkq in the kth stage. For each of these stages, we have

to select which of the inequality constraints (1d) will be added as algebraic

equations to the reformulated DAE.
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Readers familiar with the theory of constraint optimization, recall the

definition of the active set (see [23, Definition 12.1])

Apyd,ya, t,pq “ tj | gjpyd,ya, t,pq “ 0, 1 ď j ď ng u . (2)

The active set could in a straightforward KKT embedding approach deter-

mine which of the inequality constraints (1d) will be added as algebraic equa-

tions to the respective stage of the transformed differential-algebraic equation

system. However, if the LICQ is violated, then this choice would lead to an

over-determined DAE system. This situation can typically arise in linearly-

constrained mathematical programs like LPs or QPs. Hence, for LPs or

QPs we propose an alternative set from which we choose the algebraic equa-

tions to be added. We call this the set of computationally active constraints

Iapyd,ya, t,pq. For j P Iapyd,ya, t,pq we will add gjpydptq,yaptq, t,pq “ 0 to

the DAE. Note that all indices of the equality constraints (1c) are contained

in Iapyd,ya, t,pq and that Iapyd,ya, t,pq is a subset of the active set, i.e., we

have the inclusions

t1, . . . , neu Ă Iapyd,ya, t,pq Ă Apyd,ya, t,pq Ă t1, . . . , ngu.

In general, the constraints that are in the active set but not in the set of

of computationally active constraints are only weakly active, i.e., the cor-

responding Lagrange multipliers are zero. If an active set-solver is used to

solve the linear program or quadratic program, the set Iapyd,ya, t,pq can be

chosen as the complement of the basic feasible set at the solution point. The

latter approach is implemented for embedded LPs or QPs in the DAEO tool-
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box [27], which we will partly use in our numerical experiments. However,

for general nonlinear programs with nonlinear inequality constraints, one will

tpyically choose Iapyd,ya, t,pq “ Apyd,ya, t,pq.

The set of computationally active constraints is constant with respect to

t on the open intervals ptk´1, tkq for k “ 1, . . . , K, i.e., Iapyd,ya, t,pq ” Ika

for some time-invariant index set Ika . For stage k, i.e., t P ptk´1, tkq, we get

9yd
k
ptq “ fpykdptq,y

k
aptq, t,pq, (3a)

ykdpt
k´1
q “ yk´1

d ptk´1
q, (3b)

0 “ gjpy
k
dptq,y

k
aptq, t,pq, j P Ika , (3c)

0 “ λkj ptq, j R Ika , (3d)

0 “ ∇yaLpy
k
dptq,y

k
aptq,λ

k
ptq, t,pq, (3e)

σkj ptq “

$

&

%

gjpy
k
dptq,y

k
aptq, t,pq,

λkj ptq,

j R Ika ,

j P Ika ,
(3f)

where Equation (3a) comprises the differential equations with parametric

initial conditions since yk´1
d ptk´1q implicitly depends on p. In DAEOs, the

differential variables are continuous at the transition between two stages as

stated by Equation (3b). Equations (3c) - (3e) comprise the time-dependent

first-order optimality conditions of the embedded NLP where (3e) denotes

the derivative of the Lagrangian function

Lpyd,ya,λ, t,pq “ hpyd,ya, t,pq ´

ng
ÿ

k“1

λk ¨ gkpyd,ya, t,pq,

with respect to the algebraic variables ya. Zero crossings of one component
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σkjpkq, jpkq P t1, . . . , ngu of the switching function pσk1 , . . . , σ
k
ng
qT “ σk indicate

changes of the active set and introduce a new stage k ` 1.

Using the KKT embedding reformulation, we obtain a nonsmooth DAE

system that enables us to consider the optimization of DAEOs. We are

interested in solving the following dynamic optimization problem

min
p PP

Φpydptf qq (4a)

s.t. Nonsmooth DAE (3) (4b)

cpyd,ya,pq ď 0, (4c)

where the set P is the domain of the parameters p, Φ is the objective function,

and c denotes the constraint operator of the upper-level optimization prob-

lem. Note that, in principle, more general objective function formulations

are possible but for simplicity of presentation we stick to the Mayer-type

objective function (4a). In the next section, we describe how our numeri-

cal framework [12] provides sensitivity information to solve the upper-level

optimization task and state the required assumptions.

2.2. Numerical optimization of DAEOs

We use a sequential method for the solution of (4). Starting with an

initial guess for the upper-level optimization parameters, we use an integra-

tion algorithm to evaluate the values of the objective function and the con-

straints and calculate their sensitivities with respect to the parameter vector

p, i.e., Φp :“ BΦ
Bp

and cp :“ Bc
Bp

. Due to the nonsmoothness of the under-

lying model (3), we need to apply a specialized numerical solution method

for integration and sensitivity analysis. Therefore, we extend our numeri-
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cal framework [12] that provides adjoint sensitivity analysis for generalized

Mayer-type objective functionals2 subject to nonsmooth DAE systems such

as the reformulated DAEO model (3). Adjoint sensitivity methods are ben-

eficial for problems with a small number of model outputs (i.e., objective

functional and constraints) but many optimization parameters [4]. In order

to use adjoint sensitivity we rely on the following assumptions that take into

account the assumptions in [12]. Assumption 1 in [12] deals with the well-

posedness of the nDAE model. The verification of the well-posedness of

nonsmooth DAEs is nontrivial even for piecewise affine systems and, at the

time of writing, practically impossible for general nonlinear problems (see

[19]). We assume well-posedness in the following sense.

Assumption 1. For every p P P the transformed DAE system (3) has a

differential index 1 and has a unique solution on rt0, tf s with a finite number

of switching points where the active set changes.

Assumption 1 implies that K, the number of total stages, is finite. Hence,

this DAE is solvable by integration algorithms with appropriate event detec-

tion. In general, violations of Assumption 1 will be detected by the integra-

tion algorithm.

The regularity of the partial Jacobian of the algebraic equations (3c)–(3e)

with respect to the algebraic variables has been investigated by Kojima [17,

Theorem 3.5].

2The objective function type allows formulation of the most relevant optimization prob-
lems in chemical engineering, for example, parameter estimation and optimal control prob-
lems.
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Theorem 1. In system (3), the partial Jacobian of the algebraic equations

with respect to the algebraic variables is regular if and only if

1. the LICQ holds with respect to the set of computationally active con-

straints Ika ; and

2. the projected Hessian of the Lagrangian is regular, where the projection

is performed with respect to the set computationally active constraints

Ika
3.

Consequently, if these conditions are violated in the interior of one stage

ptk´1, tkq, Assumption 1 is not valid anymore and the DAE solver will fail. On

the other hand, if the DAE solver successfully terminates, the conditions of

Theorem 1 hold in the interior of each stage ptk´1, tkq. For embedded NLPs,

the set of computationally active constraints is identical with the active set.

According to Theorem 1, the DAE solver will fail on violations of the LICQ.

Violations of the LICQ with respect to the active set occur frequently in LPs

and QPs. In these cases, the DAEO toolbox that is available open-source

as part of our previous publication [26] can be used to choose the set of

computationally active constraints to the complement of the basic feasible

set at the solution point. I.e., even if the LICQ with respect to the active set

is violated, it may not be violated with respect to the set of computationally

active constraints. The DAEO toolbox has three core features: (i) it allows

3The projected Hessian of the Lagrangian is defined as follows (cf. Nocedal and
Wright [23, page 558]): Let v1, . . . ,vk be a basis of the subspace tv P Rna :
p∇yagjpy

k
dptq,y

k
aptq, t,pqq

T v “ 0, j P Ika u. Let V P Rnaˆk be the matrix the
columns of which are formed by v1, . . . ,vk. Then, the projected Hessian is defined by
V T∇2

yaya
Lpyd,ya,λ, t,pqV . The regularity of the projected Hessian is independent of the

choice of v1, . . . ,vk.
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formulation of DAEOs in form (1); (ii) it automatically derives and solves the

KKT system (3c) - (3e) for a fixed set of computationally active constraints

Ika and provides the values of the switching function σk (cf. Eq. (3f)) to the

integration algorithm and (iii) it triggers the optimizer to compute a new

optimal solution point and the corresponding set of computationally active

constraints Ik`1
a when a new stage is introduced.

With the maximal order κ of the employed numerical integrator, we re-

quire smoothness of the functions f , h, and gk, k “ 1, . . . ng according to the

following assumption:

Assumption 2. The function f is pκ` 1q-times continuously differentiable.

h, gk, k “ 1, . . . ng are pκ` 2q-times continuously differentiable, where κ P N,

κ ě 1.

In order to integrate that DAE numerically, we assume that Assumption

2 holds with sufficiently large κ.

Assumption 3. When a Runge-Kutta, Rosenbrock-type, extrapolation or

BDF method of order q is used to solve the NDAE (3) and its adjoint system,

Assumption 2 holds with κ “ q.

In our numerical experiments will use the integrator IDAS of the SUN-

DIALS suite [14] which uses a variable order from 1 to 5, i.e., κ “ 5.

Assumption 4. We assume that the time derivatives of the triggering com-

ponents of the switching functions σkjpkqr¨s at its roots exist and are nonzero:

d

dt
σkjpkqrts

ˇ

ˇ

ˇ

ˇ

t“tk
‰ 0, k “ 1, . . . , K ´ 1.
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Assumption 4 is taken over unchanged from [12] and is required to avoid

division by zero in the adjoint equations.

In order to solve the dynamic optimization problem (4) numerically, it

is important to detect zero-crossings of the switching functions. According

to Eq. (3f) the formulation of a switching function σk depends on Ika and

may change between two stages. Figure 1 illustrates the procedures of the

´ε

σk`1
jpkqpt

kq

tk˚ tk t

σkjpkq

σk`1
jpkq

Figure 1: Illustration to explain root finding

root-polishing method used in this work and the ε-approach in Modelica used

in our previous work [26], respectively. First we explain the root-polishing

method.

The root-finding DAE solver detects a zero-crossing of the jpkqth compo-

nent of σk from positive to negative at tk˚ and stops the integration4. Then,

we virtually add a small positive increment ε to σkjpkq and continue the in-

tegration of stage k. Then the integrator will detect a zero-crossing of the

modified σkjpkq and stop the integration at tk. Now we change the stage from

stage k to stage k ` 1. With the change of the active set, also the formula-

tion of the switching function changes according to Eq. (3f). Hence, at the

beginning of stage k ` 1, σk`1
jpkq will have a strict positive value.

4Note that we exploit the capability of the root-finding DAE solver IDAS to set the
direction of the zero-crossing, i.e., zero-crossings from negative to positive are ignored by
IDAS.
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The ε-approach in Modelica works similar. Here, we virtually add a

positive increment ε to the switching condition. In this way the integration

of the first stage will pass tk˚ and stop directly at tk. At tk, the stage is

changed from stage k to stage k ` 1. Again, at the beginning of stage k ` 1,

the switching function has a strict positive value.

Both approaches are implemented such that switching functions from

other stages are not visible in the current stage, i.e., in the example illustrated

in Figure 1, σk is only visible to the solver in the interval rtk´1, tks, similarly

σk`1 is only visible to solver in the interval rtk, tk`1s.

An active set change occurs if either an active inequality becomes inactive

(i.e., λj becomes zero) or vice versa. The total number of stages is unknown

before simulation and depends on the parameter vector p.

The extended numerical framework requires the user-supplied derivatives

of the residuals of the DAE model. These derivatives are best obtained by

algorithmic differentiation (AD). For an introduction to algorithmic differ-

entiation, we refer to the book by Naumann [22]. In our implementation, we

use an AD solution based on operator overloading in C++ and developed

by the research group on Software and Tools for Computational Engineering

(STCE) at RWTH Aachen University. The NLP solver SNOPT [8] is used

to solve the dynamic optimization problem (4).

3. Illustrative examples

The following examples illustrate how the presented sequential method

can be used for optimization of DAEOs. The first example deals with a flash

unit comprising a single embedded NLP. The second case study calculates
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an optimal start-up scenario for a rectification column with 20 trays and an

equal number of embedded NLPs. In the last example, we aim to find optimal

batch conditions for a microbial transformation process based on the DFBA

modeling approach leading to a DAE with a single embedded quadratic pro-

gram. We use our extended numerical framework with integration tolerance

of 1 ˆ 10´8, event tolerance of 2 ˆ 10´8 and maximum discontinuity toler-

ance of 1 ˆ 10´7 [12] and the NLP solver SNOPT 7.2-4 [8] with optimality

and feasibility tolerances of 1 ˆ 10´6. All calculations are performed on an

Intel® Core™ i3-4160 with 3.6 GHz and 16 GB RAM running Windows 7

64-bit operating system.

3.1. Optimal batch vaporization

In this illustrative example, we consider an optimal batch vaporization

of an equimolar binary mixture of acetone (1) and ethanol (2). The mixture

is in vapor-liquid equilibrium that is found at the (global) minimum of the
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Gibbs free energy. The dynamic model is given by

9hptq “
Qptq

MV ptq `MLptq
, hpt0q “ h0, (5a)

hptq “
MV ptq ¨ hV pT ptq, p,yptqq `MLptq ¨ hLpT ptq, p,xptqq

MV ptq `MLptq
(5b)

pMV ptq,MLptq,xptq,yptqq P arg min
M̂V ,M̂L,x̂,ŷ

GM
“ M̂V

C
ÿ

i“1

ŷiḠ
V
i pT ptq, p, ŷq

` M̂L

C
ÿ

i“1

x̂iḠ
L
i pT ptq, p, x̂q (5c)

s.t. Mi “ M̂V ¨ ŷi ` M̂L ¨ x̂i, i “ 1, . . . , C, (5d)

C
ÿ

i“1

Mi “ M̂V ` M̂L, (5e)

C
ÿ

i“1

ŷi ´
C
ÿ

i“1

x̂i “ 0, (5f)

M̂V ě 0, M̂L ě 0, (5g)

ŷi ą 0, x̂i ą 0, i “ 1, . . . , C, (5h)

where h is the molar enthalpy and the only differential variable. The algebraic

variables are the temperature T , the molar amounts of vapor and liquid phase

MV and ML, respectively, and the mole fractions of component i in the vapor

and liquid phase yi and xi, respectively. Note that we adapt the formulation

of the embedded optimization problem from the work by Sahlodin et al.

[32]. The heat duty Q is the only input of the model and will be calculated

as the solution of the upper-level optimization problem. hV and hL are the

molar enthalpies of vapor and liquid phase, respectively, GM is the Gibbs free

energy, ḠV
i and ḠL

i are the partial molar Gibbs free energy of component i
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in the vapor and the liquid phase, respectively, Mi is the total molar hold-up

of component i in both phases that is constant in this example and C is the

number of components (i.e., for the binary example C “ 2). Equation (5a)

is the energy balance equation and (5b) is the constitutive equation for the

molar enthalpy h. Of the algebraic variables, all but the temperature are

calculated as the solution of the embedded optimization problem (5c) - (5h)

that minimizes the Gibbs free energy GM subject to mass balance and non-

negativity constraints. The molar enthalpies of vapor and liquid phase are

calculated from constitutive equations of form hV pT, p,yq and hLpT, p,xq,

where T is the temperature, p is the pressure (the symbol of the pressure

should not be confused with the parameter vector p), and y and x are the

vectors of mole fractions of vapor and liquid phase, respectively. Similarly,

the partial molar Gibbs free energies ḠV
i and ḠL

i depend on temperature,

pressure and mole fraction of the respective phase.

We now reformulate DAEO (5) using first-order optimality conditions of

the embedded NLP as described in Section 2.1. In the two-phase region

(i.e., MV ą 0 and ML ą 0), the well-known isopotential condition can be

deduced from the KKT conditions [32]. In the single-phase region, however,

the unmodified KKT conditions of DAEO (5) violate the LICQ , i.e., if

either MV “ 0 (liquid only) or ML “ 0 (vapor only). In this situation, the

KKT system becomes singular. In particular, the mole fractions of the non-

existing phase can be chosen arbitrarily as long as they sum up to unity and

thereby satisfy (5f). A common approach from literature to overcome this

shortcoming uses a relaxation of the isopotential condition by an auxiliary

variable β in the single phase region [10, 3, 32]. Thereby, the singularity is
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avoided. The mole fractions of the nonexisting phase are determined by a

tangent plane to the Gibbs free energy surface that is parallel to the one of the

existing phase [25]. We use the described relaxation from literature to capture

vanishing and reappearing phases in dynamic VLE systems [10, 3, 32]. A

detailed derivation of the reformulation is omitted here but can be found

in the cited literature. Using the notation gp. . . q “ 0 for the algebraic

equations, we obtain the following nonsmooth equation system

9hptq “
Qptq

MV ptq `MLptq
, hpt0q “ h0, (6a)

gi “ yiptq ´ βptq ¨KipT ptq, p,xptq,yptqq ¨ xiptq, i “ 1, . . . , C, (6b)

gC`i “Mi ´ pMV ptq ¨ yiptq `MLptq ¨ xiptqq, i “ 1, . . . , C, (6c)

g2C`1 “ hptq ´
MV ptq ¨ hV pT ptq, p,yptqq `MLptq ¨ hLpT ptq, p,xptqq

MV ptq `MLptq
(6d)

g2C`2 “

C
ÿ

i“1

Mi ´ pMV ptq `MLptqq, (6e)

g2C`3 “

C
ÿ

i“1

yiptq ´
C
ÿ

i“1

xiptq, (6f)

gL
2C`4 “

MV ptq

MV ptq `MLptq
, gVL

2C`4 “ βptq ´ 1,

gV
2C`4 “

MV ptq

MV ptq `MLptq
´ 1, (6g)

σLÑVL
“ gL

2C`4 ´ g
VL
2C`4, σVLÑL

“ gVL
2C`4 ´ g

L
2C`4, (6h)

σVÑVL
“ gV

2C`4 ´ g
VL
2C`4, σVLÑV

“ gVL
2C`4 ´ g

V
2C`4, (6i)

where β is the auxiliary variable that is introduced to enable simulation in

all possible phase regimes, Ki is the vapor-liquid distribution factor that
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is a function of temperature, pressure and mole fractions of vapor and liq-

uid phase, respectively. Note that no conclusion regarding global optimality

of the embedded NLP can be drawn as we use local, first-order optimality

conditions to reformulate the DAEO (5) into the nonsmooth DAE (6). Ther-

modynamically, the formulation may result in unstable phase splits referring

to local but not global minima of the Gibbs free energy. Furthermore, the

globally optimal solution may change from global to local optimum during

dynamic simulation. Sahlodin et al. [32] advocate to use the mid function

that returns the middle value of its three arguments to capture phase changes

during dynamic simulation, i.e., mid p MV ptq
MV ptq`MLptq

, β ´ 1, MV ptq
MV ptq`MLptq

´ 1q “ 0

[32, Eqn. (39e)]. For our framework, a formulation similar to the mid func-

tion is given in Equations (6g) - (6i). Note that no direct switch from pure

liquid to pure vapor is possible. The corresponding switching function has

a constant value (σVÐL “ gV
2C`4 ´ gL

2C`4 “ ´1) and is thus omitted. If

vapor and liquid phase coexist (indicated by superscript VL), β “ 1 and

Equation (6b) becomes the well-known isopotential equation. A vanishing

phase is captured by the respective switching condition σVLÑL or σVLÑV, re-

spectively. In the single-phase regime, the molar amount of the non-existing

phase are equal to zero and the auxiliary variable becomes β ‰ 1 and thereby

relaxes the isopotential conditions. To summarize, a single algebraic equa-

tion (6g) changes for each considered phase regime. The switching between

two phase regimes is detected by zero-crossings from positive to negative of

the switching functions (6h) and (6i). For details regarding the reformu-

lation, please refer to literature [10, 3, 32]. The molar enthalpy h is the

only differential state of the system while the 2C ` 4 algebraic states are
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y “ rMV ,ML,x,y, T, βs
T . The total molar hold-ups of each component Mi

and the pressure p are parameters and the heat duty Q is the only input to

the model.

We aim to find the optimal heat duty Q to increase the temperature T

from T0 “ T pt0q to the fixed setpoint temperature Tset. We choose T0 cor-

responding to sub-cooled liquid and Tset to super-heated vapor to illustrate

the handling of phase switches during optimization. The optimal heat duty

profile is expected to be at the upper bound Qmax until the setpoint tempera-

ture is reached and zero afterwards. Therefore, we formulate a time-optimal

control problem to find the minimum time required for the desired temper-

ature increase at constant heat duty Q “ Qmax. We solve the optimization

problem

min
tf

tf (7a)

s.t. T ptf q “ Tset (7b)

Q “ Qmax (7c)

Nonsmooth DAE (6) (7d)

where equation (7b) states the endpoint constraint for the temperature. Note

that this equality constraint of the upper-level optimization problem can be

written as T ptF q´Tset ď 0 and Tset´T ptF q ď 0 to match the notation of the

constraint operator in (4). We use tf “ 8000 s as initial guess. The results of

the dynamic optimization are shown in Fig. 2. The minimum time required

to heat the mixture to the desired setpoint temperature is tF « 6999 s. The

optimal solution comprises two active set changes (see Fig. 2, bottom). First,
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the vapor phase appears (at t1 « 142 s) before the liquid phase disappears (at

t2 « 6932 s). For this small example, the analytic solution is quite intuitive.

The optimization framework solves it as expected while detecting both active

set changes. As discussed, using the KKT-based reformulation does not

guarantee global solution of the embedded optimization problem. An a-

posteriori check on a fine grid, however, indicates that the global minimum

of the embedded problem is found.

3.2. Optimal start-up of rectification column

The second illustrative example is based on a case study presented by

Caspari et al. [5] and deals with the optimal start-up of a rectification column.

The dynamic model formulation is adapted from the work of Raghunathan

et al. [30]. A detailed description of the dynamic model is given in the work

of Caspari et al. [5] and the equations for an equilibrium tray are given in the

SI of this work. In the following, we give a short summary of the considered

column configuration and the dynamic model equations with a particular

focus on the differences of our modeling approach compared to the work by

Caspari et al. [5].

We consider a cryogenic rectification column to separate a mixture of ni-

trogen, oxygen and argon. The column has a single feed stream with fixed

location and a total condenser at the top. The column has 20 equilibrium

trays, each comprising an embedded optimization problem as described in the

previous example. The column model introduces two additional nonsmooth

conditions per equilibrium tray for the calculation of leaving vapor and liquid

flows, respectively [30]. The first is an overflow weir formulation that allows

liquid flow from trays if the liquid hold-up is greater than a minimum hold-up
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Figure 2: Temperature profile of the solution of time-optimal control problem (7) (top).
The setpoint temperature Tset “ 345 K is reached after a minimum heating time of
tf « 6999 s. Vertical lines indicate active set changes: Vapor phase appears after t1 « 142 s
and liquid phase vanishes after t2 « 6932 s. The bottom graphs show the values of the
respective switching function triggering the switching event. Solid lines indicate switching
functions that are visible to the solver.

[30]. A similar condition is formulated for vapor stream leaving a tray that

exists if the vapor head is greater than zero [30]. In the previous literature,

these conditions are reformulated using smoothed Fischer-Burmeister func-

tions [5, 30]. In this work, we treat them as additional nonsmooth equations.

In total, the model comprises 80 differential and 727 algebraic states.

The aim of the optimization problem is to find optimal start-up scenario
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for the rectification column by minimizing the deviation of the product flow

rate and the product purity from given set points, i.e.,

min
ξ, 9nFeed

ż tf

t0

´

wnp 9nProductptq ´ 9nset
Productq

2
` wxpx

N2
Productptq ´ x

N2,set
Productq

2
¯

dt (8a)

s.t. 0 ď ξi ď 0.8, i “ 1, . . . , ni (8b)

80 mol s´1
ď 9nFeed,i ď 120 mol s´1, i “ 1, . . . , ni (8c)

Nonsmooth rectification column model, (8d)

where the objective function defines the integral of weighted squared de-

viations of the product flow rate 9nProduct and product purity xN2
Product from

their respective set points. We use the weights wn “ 0.001 and wx “ 1 to

obtain same order of magnitude for both parts of the objective. The set

points are 9nset
Product “ 50 mol s´1 and xN2,set

Product “ 0.995, respectively. The

optimization variables are the parameters for the discretization of the split

factor ξ and the feed flow rate 9nFeed with upper and lower bounds defined

by constraints (8b) and (8c), respectively. In contrast to the work of Caspari

et al. [5], who employed control grid adaption based on Haar wavelets, we

choose a fixed piecewise constant discretization for the control variables with

N “ 10 equidistant intervals . The initial guess is ξi “ 0, i “ 1, . . . , N, and

9nFeed,i “ 80 mol s´1, i “ 1, . . . , N, on all intervals. The rectification column

is initialized with the steady-state corresponding to the initial guess values

of the optimization variables, i.e., with vapor at the dew point on all column

trays.

The results of example (8) are shown in Figure 3. Despite the coarser

discretization, the optimization variables in Figures 3a and 3b show a similar
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Figure 3: Results of rectification column optimization (8): optimization variables split
factor ξ (a) and feed flow rate 9nFeed (b), state variables product purity (c) and product
flow rate (d) with dashed set points. (e) Liquid hold-up on trays. Vertical solid line refers
to active set change, dashed line to activation of liquid outflow on the respective trays. (f)
Pressure on trays.

profile as in the work of Caspari et al. [5, Figures 10a and 10b]. In the

beginning, both optimization variables are at their upper bounds. The split

factor is decreased after approx. 1000 s and settles at a value of around

0.46 towards the end. The feed flow rate is at its lower bound in the end.

The product purity and product flow rate reach their respective set points

after t « 2400 s (cf. Figures 3c and 3d). In the beginning of the start-up

process, there is only vapor in the column. Starting with the top tray, VLE

is gradually established on every column tray. The nonsmooth model tracks

the appearance of the respective liquid phase by an active set change related
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to the respective inequality constraint (solid vertical lines in Fig. 3e). After

a short period of time, there is enough liquid hold-up on the corresponding

column tray so that the liquid outflow also becomes active (vertical dashed

lines). This sequence follows from the top to the bottom tray.

The results show that the sequential approach using the nonsmooth DAE

integration framework based on adjoint sensitivity analysis and SNOPT

solves relevant large-scale DAEO examples with NLPs embedded leading

to equivalent results compared to literature. Note, however, that the cited

work (refs. [5, 30]) applies smoothing technique to the complementarity con-

straints, while we solve the nonsmooth DAE system, i.e., we do not have to

choose a smoothing parameter. Similar to the previous phase equilibrium

example, there is again no guarantee to find the global minimum of the em-

bedded NLP when using the KKT-based reformulation approach. For this

example, an a-posteriori check again showed that the global solution is found.

3.3. Optimal batch fermentation using DFBA modeling approach

This example deals with optimal conditions for a batch fermentation pro-

cess. We consider the growth of Corynebacterium glutamicum on a carbon

source mixture of d-glucose and d-xylose based on a DFBA model from our

previous work [28]. The metabolic model describes four different pathways

for d-xylose uptake and consists of 50 intracellular metabolites, 59 metabolic

fluxes, and six additional exchange fluxes. Maximization of the biomass

growth rate is chosen as objective function for the embedded optimization

problem. The dynamic model contains differential balance equations for the

concentration of biomass (X), carbon sources d-glucose (GLC) and d-xylose

(XYL), potential products succinate (SUCC), lactate (LAC) and acetate
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(ACE), and for the overall reaction volume. The six exchange fluxes cou-

ple the metabolic model to the differential balance equations. The uptake

rates for both carbon sources are modeled by Michaelis-Menten kinetics while

the maximum oxygen uptake rate was not constrained to simulate aerobic

growth conditions. More details on the metabolic model and its KKT em-

bedding reformulation yielding a nonsmooth bioreactor model can be found

in [26, 28].

In this illustrative example, we aim at finding optimal batch conditions

for biomass growth by solving the following dynamic optimization problem

min
cGLC,0,cXYL,0,tf

´
cXptf q

tf
(9a)

s.t. 0 ď 6 ¨ cGLC,0 ` 5 ¨ cXYL,0 ď 1 mol L´1, (9b)

Nonsmooth bioreactor model, (9c)

where cGLC,0 and cXYL,0 are the initial concentrations of d-glucose and d-

xylose, respectively, tf is the final batch time, the objective function aims

to maximize the space-time yield with respect to biomass, constraint (10d)

places an upper limit on the overall concentration of carbon atoms in the

reaction medium at initial time, and the nonsmooth bioreactor model refers

to the model described above. In summary, we aim to find the optimal

mixture of carbon sources d-glucose and d-xylose for high biomass growth

within short batch time.

In this illustrative example, we aim at finding optimal batch conditions
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for biomass growth by solving the following dynamic optimization problem

min
φC5,0,tf

´
cXptf q

tf
(10a)

s.t. cGLCpt0q “
p1´ φC5,0q ¨ ctotal,0

6
, (10b)

cXYLpt0q “
φC5,0 ¨ ctotal,0

5
, (10c)

ctotal,0 “ 1 mol L´1, (10d)

Nonsmooth bioreactor model, (10e)

where φC5,0 is the fraction of total carbon atoms stemming from d-xylose

at initial time t0 and tf is the final batch time. The objective function

aims to maximize the space-time yield with respect to biomass. cGLCpt0q and

cXYLpt0q are the initial concentrations of d-glucose and d-xylose, respectively,

constraint (10d) limits on the overall concentration of carbon atoms in the

reaction medium at initial time, and the nonsmooth bioreactor model refers

to the model described above. The bounds on the optimization variables

are φC5,0 P r0, 1s and tf P r9.5, 13s h. Note that φC5,0 “ 0 refers to a pure

d-glucose solution, while φC5,0 “ 1 indicates pure d-xylose. In summary, we

aim to find the optimal mixture of carbon sources d-glucose and d-xylose for

high biomass growth within short batch time.

Figure 4 shows the concentration profiles of relevant extracellular species

leading to maximum space-time yield with respect to biomass under aerobic

process conditions. The optimal values of the control variables are φC5,0 “ 0.2

and tf “ 10.55 h. In this example, the embedded optimization problem is

a convex quadratic program so that the KKT-based approach provides an
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exact reformulation of the embedded optimization problem and the solution

refers to the global minimum. In this example, the LICQ holds and the

projected Hessian of the Lagrangian function is regular as no violations are

reported by the DAEO toolbox.
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Figure 4: Concentration profiles of extracellular species for aerobic growth of C. glutam-
icum. Vertical lines indicate changes of the active set.

4. Conclusion and outlook

This work deals with the optimization of differential-algebraic equations

with embedded optimization criteria. To this end, the embedded optimiza-

tion problem is first substituted by its first-order optimality conditions. The

resulting nonsmooth DAE system is solved by extending the software pro-

vided by Hannemann-Tamás et al. [12]. Adjoint sensitivity analysis provides

the required gradients to solve the upper-level optimization problem via di-

rect single-shooting. In contrast to existing works, the presented method

allows the optimization of the nonsmooth DAE system without approxima-
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tion as illustrated by solving three relevant optimization problems based on

DAEO models.

The theory of this work covers the use of more general objective function

formulations than the ones used in the examples. For example, it allows

the consideration of parameter estimation problems, e.g., based on a least-

squared objective. In a future work, the framework shall be used to estimate

parameters related to the intracellular reaction network or to the uptake

kinetics (such as Michaelis-Menten constant) of DFBA models to increase

the model agreement when compared to experimental data and thereby also

the applicability of this modeling approach. Another direction of research is

the global optimization of the embedded optimization problem that is par-

ticularly important for embedded NLPs with multiple local optima. In the

present work, we used local optimality conditions that do not allow a con-

clusion about global optimality so we relied on thorough check of the results.

Further, the numerical framework may form the basis for more complex dy-

namic optimization examples such as model predictive control or optimal

experimental design.

Availability and requirements

License: The software code for optimization of DAEOs is available under the

terms of the GNU General Public License version 3.0 as published by the Free

Software Foundation at https://www.gnu.org/licenses/gpl-3.0.html.

Link to repository: http://permalink.avt.rwth-aachen.de/?id=646019

Operating system(s):

Programming language: The models and the program for optimization

of DAEOs are written in C++.
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Other requirements: CPLEX for embedded linear and quadratic programs

(tested with version 12.8). SNOPT or other NLP solver for upper-level op-

timization problem (we used SNOPT 7.2-4).
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Appendix A. Small linear DAEO

Here, we use a small example where the embedded optimization problem

is linearly constrained to illustrate the need for the DAEO toolbox. For

this case, a switching event, i.e., a change of the active set, requires the

optimizer to solve the embedded optimization problem and choose a new set

of computationally active constraints. This will be illustrate using a simple

DAEO with one differential variable yd, three algebraic variables ya and no

time-invariant parameters. We consider the time horizon [0,2.5]. The DAEO

model is given by

9ydptq “ 1, with ydpt0q “ 0, (A.1a)

min
ŷa,1,ŷa,2,ŷa,3

´pŷa,1 ` ŷa,2q (A.1b)

s.t. 0 “ g1pydptq, ŷa, t,pq “ ŷa,1 ` ŷa,2 ` ŷa,3 ´ ydptq, (A.1c)

0 ď g2pydptq, ŷa, t,pq “ ŷa,1, (A.1d)

0 ď g3pydptq, ŷa, t,pq “ ŷa,2, (A.1e)

0 ď g4pydptq, ŷa, t,pq “ 1´ ŷa,1, (A.1f)

0 ď g5pydptq, ŷa, t,pq “ 1´ ŷa,2, (A.1g)

0 ď g6pydptq, ŷa, t,pq “ ŷa,3. (A.1h)

Figure A.5 shows the feasible set of the embedded linear program of DAEO

(A.1). The variables ŷa,1 and ŷa,2 are box-constrained by the constraints

(A.1d) - (A.1g). An additional inequality constraint ŷa,1 ` ŷa,2 ď ydptq is

reformulated giving the equality constraint (A.1c) and inequality (A.1h) in-

troducing the slack variable ŷa,3. This reformulation yields an embedded
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LP that is typical for DFBA models (cf. [26, Eqns. (15)]) where only the

right-hand-side of the equality constraints is time-dependent. This constraint

depends on the differential variable ydptq as indicated by the dashed lines for

different time points. The cost vector of the linear part of the objective

function q is orthogonal to constraint (A.1c).
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¨
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0
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‚

Figure A.5: Feasible set of the embedded LP in DAEO (A.1).

We now apply the KKT embedding solution approach with the Lagrangian

function given by

Lpyd,ya,λ, tq “ ´pya,1ptq ` ya,2ptqq

´ λ1ptq ¨ pya,1ptq ` ya,2ptq ` ya,3ptq ´ ydptqq

´ λ2ptq ¨ ya,1ptq ´ λ3ptq ¨ ya,2ptq ´ λ4ptq ¨ p1´ ya,1ptqq

´ λ5ptq ¨ p1´ ya,2ptqq ´ λ6ptq ¨ ya,3ptq.

Evaluation of the time-dependent KKT conditions yields the following non-
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smooth algebraic equation system

0 “ Lypyd,ya,λ, tq

“

¨

˚

˚

˚

˝

´1

´1

0

˛

‹

‹

‹

‚

´

¨

˚

˚

˚

˝

1

1

1

˛

‹

‹

‹

‚

λ1ptq

´

¨

˚

˚

˚

˝

1 0 ´1 0 0

0 1 0 ´1 0

0 0 0 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ2ptq

λ3ptq

λ4ptq

λ5ptq

λ6ptq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (A.2a)

0 “ g1pydptq,yaptq, t,pq “ ya,1ptq ` ya,2ptq ` ya,3ptq ´ ydptq, (A.2b)

0 “

$

&

%

g2pydptq,ya, t,pq “ ya,1ptq if 2 P Ia

λ2ptq else
, (A.2c)

0 “

$

&

%

g3pydptq, ŷa, t,pq “ ya,2ptq if 3 P Ia

λ3ptq else
, (A.2d)

0 “

$

&

%

g4pydptq, ŷa, t,pq “ 1´ ya,1ptq if 4 P Ia

λ4ptq else
, (A.2e)

0 “

$

&

%

g5pydptq, ŷa, t,pq “ 1´ ya,2ptq if 5 P Ia

λ5ptq else
, (A.2f)

0 “

$

&

%

g6pydptq, ŷa, t,pq “ ya,3ptq if 6 P Ia

λ6ptq else
, (A.2g)

σkj “

$

&

%

λjptq if j P Ia

gjpydptq,ya, t,pq else
, for j “ 2, . . . , 6. (A.2h)
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Figure A.6: Trajectories of small linear DAEO (A.1): state variables (top); switching
functions (bottom).

The solution of DAEO (A.1) using the KKT embedding solution method

is shown in Figure A.6. At initial time t “ t0, the DAEO toolbox solves the

embedded LP and returns the set of computationally active constraints for

the first stage I1
a “ t1, 3, 6u. The dynamic behavior of the algebraic variables

is indicated by the red dashed line in Fig. A.5. The algebraic equation system
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takes the following form
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(A.3)

Note that the order of the equations was changed to better visualize

the structure of the linear algebraic equation system. For the chosen set of

computationally active constraints, the following observations can be made:

First, the Lagrange multiplier can be solved independently of ydptq and yaptq

and will be constant with respect to time. Second, the embedded LP has al-

ternate optima, i.e., no unique solution, and the LP solver will choose among

the possible solutions. The solution is degenerate because we have λ2 “ 0

for 2 P I1
a . Remember that the ε-approach prevents the event detection algo-

rithm from triggering an event. Lastly, LICQ holds, the projected Hessian

has dimension zero and is therefore regular and the partial Jacobian Bg
Bz

is

regular, i.e., we have an index-1-system.

At t “ 1, we have that ya,1pt “ 1q “ 1 and the zero-crossing of switching

function σ1
4 “ p1 ´ ya,1ptqq triggers an event, i.e., the first switching time
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point t1 is found and a new stage is created. Only activating g4 “ 0 for

the second stage makes the algebraic part of the DAE unsolvable because we

would have ya,1ptq “ 1 from g4, ya,2ptq “ 0 from g2, ya,3ptq “ 0 from g6, and g1

would provide no additional information. As a consequence, this combination

of active constraints violates LICQ and the DAE cannot be solved. At this

point, the DAEO toolbox calls the optimizer to solve the LP again and return

a new set of computationally active constraints. Remember that we use the

ε-approach to ensure that a new set of computationally active constraints is

found. In this case, I2
a “ t1, 4, 6u. In the second stage, the solution of the

algebraic variables pya,1, ya,2q moves from (1,0) along g4 to p1, 1q as indicated

by the red dashed line in Fig. A.5. The algebraic equation system for stage

2 is given by
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, (A.4)

and similar observations can be made, most importantly, Bg
Bz

is regular and

the system can be solved.

The last change of the set of computationally active constraints occurs at
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t “ 2, where zero-crossing of σ2
5 “ g5 is found. The new set of computation-

ally active constraints for stage 3 is I2
a “ t1, 4, 5u and simulation continues

until tf .

This example shows that embedded optimization problems that are lin-

early constrained require the calculation of a new set of computationally ac-

tive constraints by an optimizer. That is because the activation of an inequal-

ity constraint based on the respective switching function crossing zero makes

the resulting linear algebraic equation system unsolvable because LICQ is vi-

olated. As a consequence, most linearly constrained DAEOs are not solvable

by direct implementation of the nonsmooth DAE system.

Another important observation can be made for ydpt “ 0q “ 0 where the

optimal solution is ya “ p0, 0, 0q
T . At this point, the set of computationally

active constraints defining the algebraic equation system is non-unique. Any

two of the constraints (A.1d), (A.1e) and (A.1h) can hold with equality, i.e.,

be part of the set of computationally active constraints Ia. The same is true

for ydpt “ 1q “ 1 and the corresponding optimal solution is ya “ p1, 1, 0q
T .

Here, either two of (A.1f), (A.1g) and (A.1h) can be active.
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