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a b s t r a c t 

Industrial applications such as batteries and bio-separations require modeling the thermodynamic proper- 

ties of mixed solvent electrolytes. Thermodynamic models for electrolytes often consider the solvents as 

a dielectric continuum characterized by their dielectric constant. Therefore, accurate predictions require 

a physically sound model for the dielectric constant of mixed solvents, depending on temperature, pres- 

sure, and mixture composition. We present a physical model for the dielectric constant of pure solvents 

and mixtures based on perturbation theory. The analytical expression is third order in the dipole density. 

For each pure component, the model requires the dipole moment and two adjustable pure-component 

parameters. We apply the model to the binary mixtures methanol–water and ethylene glycol–water con- 

sidering pure component experimental data for temperatures between 273.15 K to 823.15 K and pressures 

between 0.1 MPa and 1189.0 MPa. The presented model improves the prediction of the mixed solvent 

dielectric constant for both mixtures compared to the linear molar mixing rule, and achieves similar ac- 

curacies as the linear volume-based and mass-based mixing rules. We show that the model is suitable in 

the case of scarce experimental data. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Mixed solvents are promising for electrochemical processes, 

.g., batteries [1] , co-electrolysis of CO 2 [2] , and chemical processes 

ith electrolyte systems, e.g., amine-based CO 2 -capture [3] . Model- 

ng these processes requires a thermodynamic model for the elec- 

rolyte system. For the design of the process, the used thermody- 

amic models should predict thermodynamic properties also for 

lectrolyte systems and operating settings where no or few exper- 

mental data are available. 

For this purpose, electrolyte equations of state (e-EoS) are 

romising tools. In e-EoS, two approaches are distinguished for 

odeling the ion-solvent solution: non-primitive and primitive 

odels [4,5] . In non-primitive models, the solvent is described 

xplicitly, as dipolar or multipolar molecules with defined inter- 

olecular (pair) potentials [5–7] . In contrast, primitive models 

reat the solvent implicitly, as a dielectric continuum [4,5] . Cur- 

ently, the primitive approach is more established for engineering 
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pplications while the non-primitive approach is still at an early 

tage of development [4–8] . 

The primitive approach characterizes the solvent as a dielectric 

ontinuum with its dielectric constant ε r , depending on tempera- 

ure and density [9] . For mixed solvents, the dielectric constant ε r 
dditionally depends on the mixture composition. Thus, the prim- 

tive approach requires a physically sound model for the dielectric 

onstant ε r of the mixed solvent as one input for an accurate pre- 

iction of thermodynamic properties. In particular, the dielectric 

onstant ε r has to be defined as a function of temperature, pres- 

ure, composition ( T , p, x ) or temperature, density, composition 

 T , ρ , x ) with sufficient accuracy, because the derivatives of the di-

lectric constant ε r with respect to these quantities enter the cal- 

ulation of, e.g., enthalpy and chemical potentials of the electrolyte 

olution. The impact of ions on the dielectric constant, particularly 

t high ion concentrations, is not considered in this work. 

In the literature, the dielectric constant of the mixed solvent ε r 
s frequently modeled with simple mixing rules that mix either 

he pure component dielectric constants ε r ,i or the pure compo- 

ent polarizations p i . The most common approach within existing 

-EoS is to mix the pure component dielectric constants ε r ,i of all 

 components linearly based on the mole, volume, or mass fraction 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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i of component i [10–13] according to 

 r = 

n ∑ 

i =1 

�i ε r ,i . (1) 

ere, the pure component dielectric constants ε r ,i (T , p) are usually 

aken from empirical correlations, from experimental data, or from 

olecular simulations [14,15] at temperature T and pressure p of 

he mixture. Additionally, the ionic influence on the dielectric con- 

tant ε r can be considered by introducing a concentration depen- 

ence [16] or by empirically correcting the mixed solvent dielectric 

onstant [17] . 

Alternatively, the dielectric constant ε r can be calculated from 

he polarization p by 

p = 

(ε r − 1)(2 ε r + 1) 

9 ε r 
. (2) 

The mixed solvent polarization p can be obtained by mixing the 

ure component polarizations p i which can be calculated based on 

irkwood [18] from 

 i · p i = 

4 πN A 

3 

(
αi + 

μ2 
i 
g i 

3 k B T 

)
(3) 

ith the Avogadro constant N A , the pure component molar volume 

 i , the polarizability αi , the dipole moment μi , the Boltzmann con- 

tant k B , the temperature T , and the g-factor g i . The g-factor g i is a

easure for the correlation between neighbouring dipoles [19] and 

ust be computed or determined from experimental data. 

A prominent mixing approach for polarizations p is Oster’s rule 

19] . Oster’s rule calculates the mixture’s polarization p by mixing 

he pure component polarization p i based on the mole fraction x i 
nd the molar volume v i of pure component i [19] : 

p = ρ
n ∑ 

i =1 

x i v i p i , (4) 

here ρ is the molar mixture density. To avoid evaluating mixture 

ensities, the simplified Oster’s rule has been developed, which 

ixes the pure component polarizations p i based on the volume 

raction �v ,i calculated from the volumes prior to mixing [19] : 

p = 

n ∑ 

i =1 

�v ,i p i (5) 

imple mixing rules, such as Equations (1) , (4) , or (5) have con-

eptual deficiencies. These deficiencies become obvious when con- 

idering a solvent with a dissolved gas, e.g., carbon monoxide, 

t T = 300 K . The pure component dielectric constant ε r ,i of car-

on monoxide will be that of a pure gaseous phase, which does 

ot yield a sound contribution to a liquid phase dielectric con- 

tant through a mixing rule ( Equations (1) , (4) , or (5) , or alike).

his problem appears even for a binary mixture of, e.g., water 

nd methanol at bubble point conditions. Additionally, most sim- 

le mixing rules neglect the non-ideality of mixtures and thus lack 

ccuracy. 

The accuracy can be improved by refining the simple mixing 

ules with binary parameters from experimental data [19,20] or by 

sing empirical correlations or mixing rules. For empirical correla- 

ions, parameters a i are fitted to mixture data. For example, Amir- 

ahed and Blake [21] calculate the dielectric constant ε r of a binary 

ixture as a polynomial depending on the mole fraction of one 

omponent x 1 according to 

 r = a 0 + a 1 x 1 + a 2 x 
2 
1 + . . . , (6) 

nd Jouyban et al. [22] according to 

n ε r = 

a 0 + a 1 x 1 
a + a x 

. (7) 

2 3 1 

2 
o capture the ( T , p, x )-dependency of the dielectric constant ε r ,
hose empirical mixing models and mixing corrections require 

any experimental data and show large inaccuracies when the 

odel extrapolates from the fitted data. 

Models for the mixed solvent dielectric constant ε r were specif- 

cally developed and applied in the context of e-EoS. Maribo- 

ogensen et al. [9] predict the dielectric constant ε r of associating 

ixtures by extending the framework of Onsager [23] , Kirkwood 

18] , and Fröhlich [24] . For this purpose, the authors calculate the 

iquid volume and the probability of association using a cubic-plus- 

ssociation EoS with a Wertheim association model [25–29] . From 

nalyzing the molecular orientation and the hydrogen-bonding 

etwork, the developed model predicts the mixed solvent dielec- 

ric constant ε r over a wide range of temperature and pressure. 

he model by Maribo-Mogensen et al. [9] is applied in the elec- 

rolyte Cubic plus Association equation of state [30] . Langenbach 

nd Kohns [15] calculate the dielectric constant ε r from an ori- 

ntation distribution function derived from their co-oriented fluid 

unctional equation for electrostatic interactions (COFFEE). As mod- 

ls for only the dielectric constant ε r , these two models are rather 

nvolved and require a certain degree of expert knowledge, e.g., 

he analysis of molecular orientation [9] , or the use of certain e- 

oS [15] . 

In conclusion, a simple yet physical model is needed for the 

ielectric constant ε r of pure solvents and solvent mixtures for 

he application within e-EoS. Already in 1983, Tani et al. [31] ap- 

lied perturbation theory to derive an expression for the dielectric 

onstant ε r of a dipolar fluid. For a Stockmayer fluid, the authors 

ompared their result to computational simulations for the dielec- 

ric constant ε r and found perturbation theory to be a promis- 

ng approach. In following work, Kalikmanov [32] applied the al- 

ebraic perturbation technique by Ruelle [33] and confirmed the 

esult of Tani et al. [31] after correcting the calculation of the 

hree-body terms according to Szalai et al. [34–36] . Recently, Kohns 

t al. [37] critically assessed the use of perturbation theories for 

he dielectric constant. The authors investigated Stockmayer flu- 

ds by comparing results from molecular simulation with perturba- 

ion theory models for low density. In agreement with Tani et al. 

31] , the authors highlight the potential of perturbation theories 

or modeling the dielectric constant ε r . 
This study presents a physical model for the dielectric con- 

tant ε r of mixtures of real solvents based on perturbation the- 

ry. For this purpose, we modify the perturbation theory approach 

y Tani et al. [31] for real fluids and extend it to mixtures. Our 

odel depends on temperature, density, and mixture composition. 

or each pure component, the model requires the dipole moment 

nd one to two parameters fit to pure component data for the di- 

lectric constant ε r . We apply our model to water, methanol, ethy- 

ene glycol, and their mixtures considering pure component exper- 

mental data ranging from 273.15 K to 823.15 K and from 0.1 MPa 

o 1189.0 MPa. Even in the case of scarce experimental data for 

he pure component, the presented model accurately predicts the 

ixed solvent dielectric constant ε r . The model offers promising 

redictive power for mixtures. 

. Perturbation theory and model for dielectric constant ε r 

In agreement with Tani et al. [31] , Kalikmanov [36] applies per- 

urbation theory to the dielectric constant ε r , arriving at 

 r − 1 = 3 y 

[ 
1 + y + 

(
17 

16 

I − 1 

)
y 2 

] 
(8) 

here I is a three-body correlation integral and y is the dipole 

ensity 

 ≡ 4 π
βρμ2 (9) 
9 
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Fig. 1. Experimental data for correlation integral I exp of methanol calculated with Equation (12) depending on the density ρ (a) and the dipole density y (b). Experimental 

data from Mohsen-Nia et al. [41] , Srinivasan and Kay [42] , Dannhauser and Bahe [43] , and Heger [44] for temperatures between 283.15 K and 573.15 K and pressures between 

0.1 MPa and 350 MPa. 
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ith β = 1 / (k B T ) as the reciprocal of the thermodynamic tempera-

ure T , ρ as the density of molecules, and μ as the dipole moment 

f the molecule. Since the dipole density y is dimensionless, the 

nits must be converted accordingly, e.g., ρ in Å 

−3 and μ2 in J · Å 

3 . 

he correlation integral I in Kalikmanov’s work [36] is related to 

he correlation integral I d d � proposed by Tani et al. [31] by a fac- 

or, with 

 = I d d �
9 

17 π2 σ 6 
, (10) 

here σ is a size parameter. This factor ensures a convenient (di- 

ensionless) low-density limit of I(ρ = 0) = 1 . Equation (8) leads 

o the exact low-density limit Wertheim [38] also proposed for 

he mean spherical approximation (MSA). However, alternative ex- 

ansions are possible. Rushbrooke [39] and Tani et al. [31] argue 

hat the expansion according to Equation (8) is robust for ex- 

rapolation to high densities. In contrast, expansions in terms of 

he Debye term (ε r − 1) / (ε r + 2) and in terms of the Kirkwood

18] term (ε r − 1)(2 ε r + 1) / (9 ε r ) are less well-behaved for high

ensities [31,40] . In this work, we modify Equation (8) for the ap- 

lication to non-spherical, real fluids and extend the expression to 

ixtures. 

.1. Application to real, non-spherical fluids 

Tani et al. [31] and Kalikmanov [36] apply their theory to a po- 

ar model fluid, i.e., a system of hard spheres with the diameter σ
nd point dipoles. To model real, non-spherical fluids, we account 

or the non-sphericality by scaling the dipole density y . For this 

urpose, we introduce the dipole density scaling parameter a 1 as a 

omponent-specific adjustable parameter of our model. The scaled 

ipole density y ∗ is then calculated as 

 

∗ = a 1 · y = a 1 · 4 π

9 

βρμ2 . (11) 

Initially, Tani et al. [31] introduce the correlation integral I as 

 function of the reduced density ρ∗ = ρσ 3 . To get an impression 

f the correlation integral I, we solve Equation (8) for I and use 

xperimental data for the (unscaled) dipole density y exp and the 

ielectric constant ε r , exp to calculate the experimental correlation 

ntegral I exp : 

 exp (y exp ) = 

16 

17 

[
1 + 

1 

y 2 exp 

·
(

ε r , exp − 1 

3 y exp 
− 1 − y exp 

)]
(12) 

Fig. 1 shows the obtained experimental correlation integral I exp 

s a function of the reduced density ρ∗ (left) and the dipole den- 
3 
ity y (right) for methanol. Generally, the correlation integral I de- 

reases with increasing reduced density ρ∗. However, the experi- 

ental correlation integral I exp is not a univariate function of den- 

ity (but is a function of density and temperature). In contrast, 

 distinct, almost univariate relationship is observed between the 

xperimental correlation integral I exp and the dipole density y exp . 

onsequently, an ansatz function for the correlation integral I de- 

ending on the dipole density y seems favorable. 

Fig. 1 additionally shows that the experimental data for I exp do 

o exhibit the theoretical low-density limit of I(ρ → 0) → 1 , ac- 

ording to Wertheim [38] , but diverge for low densities. However, 

n Equation (8) , the influence of the correlation integral I on the 

esult for the dielectric constant ε r becomes negligible for low den- 

ities. Therefore, the ansatz function for the correlation integral I

oes not have to agree with the experimental data I exp for low 

ensities to achieve good results for the dielectric constant ε r . 
Overall, the ansatz function should fulfill the theoretical low- 

ensity limit of 1 and agree well with the experimental correlation 

ntegral I exp . To account for the non-sphericality of real molecules, 

e define our ansatz function based on the scaled dipole den- 

ity y ∗ (cf., Equation (11) ). Based on the analysis of the experi- 

ental correlation integral and the theoretical low-density limit, 

e express our ansatz function as 

(y ∗) = 1 + a 2 ·
(
e −y ∗ − 1 

)
(13) 

ith the correlation integral parameter a 2 ≤ 1 as the second 

omponent-specific adjustable parameter. 

As an example, Fig. 2 shows the experimental correlation in- 

egral for methanol (blue dots) and our ansatz function for the 

orrelation integral (green line) depending on the scaled dipole 

ensity y ∗ for a fixed dipole density scaling parameter a 1 . Both 

ipole density scaling parameter a 1 and correlation integral param- 

ter a 2 are fitted to experimental data for the dielectric constant ε r 
cf., Section 3 ). The ansatz function agrees well with the scaled ex- 

erimental correlation integral at high densities and matches the 

heoretical low-density limit. At low densities, the dielectric con- 

tant ε r is less sensitive to the correlation integral I than at high 

ensities. As demonstrated in Fig. 2 , the low-density limit shows 

ivergence of the correlation integral I(ε ±10% 
r ) (red line) which de- 

otes the correlation integral leading to an error of ±10% for the 

ielectric constant ε r . All experimental data points within the red 

rea correspond to an error of less than ±10% . Thus, the proposed 

nsatz function describes the experimental data well while obey- 

ng the theoretical low-density limit. 

Note that Equation (8) produces an unphysical maximum of 

he dielectric constant ε r at high densities if the pre-factor of (y ∗) 3 
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Fig. 2. Experimental data (blue) and proposed ansatz for the correlation integral 

(green) depending on scaled dipole density y ∗ . The chosen ansatz function must 

fulfill the low-density limit of 1. The dipole density scaling parameter a 1 is 2.145 

and the correlation integral parameter a 2 is 0.1442 (cf., Section 3.2 ). The red lines 

correspond to a correlation integral I(ε ±10% 
r ) leading to a model error of maximal 

±10% for methanol. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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ecomes negative. In the high-density limit, the proposed ansatz 

unction I(y ∗) becomes 1 − a 2 . Thus, the pre-factor ((17 / 16) I − 1)

f (y ∗) 3 in Equation (8) is negative if a 2 is greater than 1 / 17 . How-

ver, the maximum of our ansatz function from Equation (13) oc- 

urs at densities that are either not physical themselves or not rel- 

vant in practice. We recommend including liquid-phase experi- 

ental data in the parameter fit to ensure physical behavior for 

ensities relevant in practice. 

An estimate for a limiting scaled dipole density y ∗ depending 

n the temperature and the parameters can be obtained by nu- 

erically solving for the maximum of the dielectric constant ε r by 

etting the derivative to 0, as 

∂ε r 
∂y ∗

∣∣∣
T 

= 3 ·
[ 

1 + 6 y ∗ + 3(y ∗) 2 ·
(

17 

16 

(
1 + a 2 · (e −y ∗ − 1) 

)
− 1 

)
− 17 

16 

· a 2 · (y ∗) 3 · e −y ∗
] 

! = 0 (14) 

or y ∗ > 0 . The limiting dipole density y ∗max can be converted to the

imiting density ρmax by 

max = 

9 · k B T 

4 π · μ2 · a 1 
· y ∗max . (15) 

he limiting densities ρmax of the substances under study exceed 

he maximum experimental densities by at least 35 %, 90 %, and 

65 % for water, methanol, and ethylene glycol, respectively. An al- 

ernative ansatz function that ensures a physical high-density limit 

or the dielectric constant ε r is proposed in Section S3 of the Sup- 

orting Information. However, we observed that this alternative 

nsatz function leads to somewhat higher deviations of the model 

rom experimental data and is thus not further considered in the 

ollowing. 

.2. Extension to mixtures 

To extend our model towards mixed solvent dielectric con- 

tants, mixing rules are introduced for the dipole density y ∗ and 

he correlation integral I. These mixing rules enable calculating 

ixed solvent dielectric constants based on pure component pa- 

ameters and mixture densities ρ(T , p, x ) . Thus, no experimental 

ata for mixed solvents is required for parametrization. 

The scaled dipole density y ∗ is expressed based on the partial 

ipole density. Thus, Equation (11) is extended to the mixture of 
4 
 components by 

 

∗ = 

4 π

9 

β
n ∑ 

i =1 

a 1 ,i · ρi μ
2 
i (16) 

ith the partial density ρi = x i ρ , the dipole moment μi and the 

ipole density scaling parameter a 1 ,i of component i . We express 

he correlation integral I(y ∗) based on the mole fraction x i of com- 

onent i , as 

 ( y ∗) = 1 + 

( 

n ∑ 

i =1 

a 2 ,i x i 

) 

·
(
e −y ∗ − 1 

)
(17) 

ith the pure component correlation integral parameter a 2 ,i and 

he scaled dipole density y ∗ of the mixture from Equation (16) . 

If experimental data is available for the mixed solvent dielec- 

ric constant ε r , the scaled dipole density y ∗ ( Equation (16) ) can

e refined by introducing a binary parameter ψ i j of components 

 and j (cf., Section 4.3 below). 

In conclusion, we model the dielectric constant ε r of the mixed 

olvent as a univariate function of the dipole density y based on 

erturbation theory according to Tani et al. [31] . Apart from the 

ipole moment μi and a thermodynamic model for the mixture 

ensity ρ(T , p, x ) , the model requires two parameters per compo- 

ent fitted to experimental data of pure components: the dipole 

ensity scaling parameter a 1 and the correlation integral parame- 

er a 2 . The proposed model is thus given through Equations (16) , 

17) , and (8) , where the scaled dipole density y ∗ is used instead

f the dipole density y . 

. Correlation results for pure substances 

For each pure component i , the dipole density scaling param- 

ter a 1 ,i and correlation integral parameter a 2 ,i are fitted to ex- 

erimental data for the dielectric constant ε r . In this work, the fit 

s a least-squares minimization of the absolute deviation between 

he experimental and the calculated data with the total squared 

esiduum δε r for all m data points 

ε r = 

m ∑ 

i =1 

(
ε r , model ,i − ε r , exp ,i 

)2 

(18) 

ith the dielectric constant ε r , model ,i of the proposed model and 

he experimental dielectric constant ε r , exp ,i for data point i . The 

rder of magnitude for the dielectric constant ε r varies from 10 0 

o 10 2 . The technically most relevant dielectric constants are the 

igh values for the dielectric constants in the liquid phase. Thus, 

e minimize the absolute deviation instead of the relative devia- 

ion. In contrast, minimizing the relative deviation would empha- 

ize the result for low dielectric constants, i.e., in the gas phase, 

hile larger absolute deviations would be observed in the liquid 

hase. 

We adjust the pure component parameters for water, methanol, 

nd ethylene glycol. The dipole density scaling parameter a 1 ,i 
nd the correlation integral parameter a 2 ,i resulting from this fit 

re listed in Table 1 with their corresponding number of data 

oints m, dipole moment μi and mean absolute relative deviation 

MARD). The MARD between the model results ε r , model ,i and the 

xperimental data points ε r , exp ,i for m data points is defined as 

ARD = 

1 

m 

·
m ∑ 

i =1 

∣∣∣ε r , model ,i − ε r , exp ,i 

ε r , exp ,i 

∣∣∣. (19) 

he quality of the parameter fit is analyzed using the MARD in- 

tead of the total squared residuum from Equation (18) because 

e consider MARD values as more intuitive measures for mean de- 

iations from experimental data. 
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Fig. 3. Dielectric constant ε r of pure water depending on molar density ρ and 

temperature T . The 149 experimental data points from Fernández et al. [46] (dots) 

range from 273.15 K to 823.15 K and from 8.6 MPa to 1190.0 MPa. The results of the 

proposed model are shown as solid lines. 
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Fig. 4. Dielectric constant ε r of pure methanol depending on molar density ρ and 

temperature T . The 163 experimental data points from Mohsen-Nia et al. [41] , Srini- 

vasan and Kay [42] , Dannhauser and Bahe [43] , and Heger [44] (dots) range from 

283.15 K to 573.15 K and from 0.1 MPa to 350 MPa. The results of the proposed 

model are shown as solid lines. 
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If not provided in the literature with the experimental data, the 

olar densities are calculated using the REFPROP database [45] . If 

he model is used in the context of e-EoS, the densities can be 

alculated directly using the e-EoS. 

.1. Water 

Fig. 3 illustrates the isotherms of the dielectric constant ε r of 

ater for varying molar density ρ in a temperature range of 273.15 

 to 823.15 K. The model results in a mean average relative devia- 

ion of MARD = 3 . 2 % (cf., Table 2 ). For temperatures below 500 K,

he model is more accurate (MARD = 1 . 2 % ) than for higher tem-

eratures (MARD = 7 . 5 % ). If a specific application requires more 

ccurate results for high temperatures, the fit could be improved 

y adapting the weighting for higher temperatures in the least- 

quares fit. 

The model shows good agreement with the experimental data, 

onfirming that deviations in the ansatz function, Equation (17) , 

rom experimentally deduced values for the correlation inte- 

ral I exp at low densities are indeed insensitive and do not cause 

rouble (cf., Section 2.1 ). Thus, the presented model captures a 

ide range of temperature and pressure, even supercritical states. 

.2. Methanol 

For methanol, the experimental data used for the parameter fit 

over a temperature range of 283.15 K to 573.15 K ( Fig. 4 ). On av-

rage, the model deviates from the experimental data by MARD = 

 . 0 % ( Table 1 ) and thus, a similar accuracy is obtained as for wa-

er: as desired, the model results are more accurate for technically 

elevant states, i.e., the liquid phase at lower temperatures and 

igher densities, than above or near the critical point. For temper- 

tures below 500 K, an MARD of 1 . 5 % is obtained. 
able 1 

ure component parameters for water, methanol, and ethylene glycol: Dipole density sc

ipole moment μi and mean absolute relative deviation (MARD) of dielectric constant ε

ARD is calculated compared to the 23 data points not included in the fit, because the M

Fluid 

Dipole density scaling 

parameter a 1 , i 

Correlation integral 

parameter a 2 , i 

Water 1.465 0.1215 

Methanol 2.145 0.1442 

Ethylene glycol 1.656 0.1215 ( = a 2 , water ) 

5 
.3. Ethylene glycol 

Comprehensive experimental coverage of temperature-pressure 

 T , p)-states is available for a limited number of substances. For 

any species, only a limited number of experimental data is avail- 

ble. We are therefore interested in the model robustness for 

ases with scarce experimental data. For ethylene glycol, we thus 

imic a situation where only a single experimental data point, 

t 303.15 K, is available. To prevent overfitting, we adjust only the 

ipole density scaling parameter a 1 ,i to the data point at 303.15 K. 

n contrast, the correlation integral parameter a 2 ,i is set equal to 

he correlation integral parameter of water. We fit the dipole den- 

ity scaling parameter a 1 ,i instead of the correlation integral pa- 

ameter a 2 ,i , because the correlation integral parameter a 2 ,i takes 

imilar values for water and methanol and acts less strongly on ε r 
ompared to the dipole density scaling parameter a 1 ,i . 

The available experimental data for ethylene glycol covers tem- 

eratures from 278.15 K to 423.15 K [47] . We use that data to assess

he model’s robustness for predicting wide temperature and pres- 

ure ranges not covered in the parameter regression. Furthermore, 

e assess the model’s robustness for predicting mixed solvent di- 

lectric constants for ethylene glycol-water (cf., Section 4.2 ). 

The pure component dielectric constant ε r of ethylene glycol is 

hown in Fig. 5 for a temperature range of 278.15 K to 423.15 K. 

ith 0.6 %, the MARD of all data points not included in the pa- 

ameter fit is small compared to water and methanol ( Table 1 ). 

owever, the studied states for ethylene glycol are far below the 

ritical point, similar to the technically relevant states for water 

nd methanol, which also exhibit more accurate model results. 

A similar extrapolation capability of our model is obtained 

or water and methanol, which is analyzed by adjusting both 

odel parameters to only two experimental data points at vary- 

ng temperatures (for details, please see Supporting Information, 
aling parameter a 1 ,i , correlation-integral parameter a 2 ,i , number of data points m, 

 r of the proposed model compared to experimental data. For ethylene glycol, the 

ARD compared to the fit point is 0. 

# Data points m 

for fit 

Dipole moment μi 

in Debye MARD (%) 

149 1.855 3.2 

163 1.700 3.0 

1 2.410 0.6 
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Fig. 5. Dielectric constant ε r of pure ethylene glycol depending on molar den- 

sity ρ and temperature T . The experimental data from the Dortmund Data Bank 

[47] (dots) range from 278.15 K to 423.15 K. The results of the proposed model are 

indicated as solid lines. The star marks the single point that was used for deter- 

mining the dipole density scaling parameter a 1 (see text) and the solid blue line 

shows the model results for the temperature of the single fit point. Model results 

and experimental data points in grey are not included in the parameter fit, they are 

predictions of the model. 
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Fig. 6. Mixed solvent dielectric constant ε r for methanol–water over mole frac- 

tion of methanol x MeOH : experimental data from Akerlöf [50] (crosses), Smith et al. 

[49] (dots), and Teutenberg et al. [51] (triangles), model results from this work 

(solid lines), results of linear molar mixing rule (dashed line). 
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Table 2 

Number of data points for mixed solvent dielectric constant and mean absolute rel- 

ative deviation for mixtures methanol–water and ethylene glycol–water: The mixed 

solvent dielectric constant ε r is calculated using the model from this work vs. the 

linear mixing rules based on the mole fraction �x , the mass fraction �w , and the 

volume fraction �v . 

# Data 

Mixture points MARD (%) 

This work Linear mixing based on 

�x �w �v 

Methanol–water 39 4.0 10.6 2.5 3.6 

Ethylene glycol–water 80 2.6 8.6 4.0 3.0 
ection S1). By considering two low temperatures, the techni- 

ally relevant liquid states can be accurately predicted (MARD of 

.2 % for water and 3.0 % for methanol). Including an experimen- 

al data point at a higher temperature refines the predictions also 

or higher temperatures (MARD of 5.1 % for water and 9.7 % for 

ethanol). In conclusion, the model has strong extrapolation ca- 

abilities for the pure component dielectric constant ε r , leading to 

ccurate results even though the parameters are adjusted to only 

ne or two data points. 

We compare the proposed model for pure component dielec- 

ric constants ε r to comparable models from the literature: an ap- 

roach based on the model of Kirkwood [18] (cf., Equation (3) ) 

nd the model of Zhuang et al. [48] (details in the Supporting In- 

ormation (cf., Section S2)). Both models have one adjustable pa- 

ameter, and are thus characterized by lean parametrization and 

imple application. We adjust the model parameters to the full ex- 

erimental data set for water and methanol used in our paper. 

oth one-parameter models from the literature achieve similar ac- 

uracies as our model if only a small temperature range is stud- 

ed. However, due to the second adjustable parameter, our model 

chieves high accuracies for the dielectric constant ε r in a wide 

ange of temperatures and pressures. 

. Prediction of mixed solvent dielectric constants 

Using the parameters obtained in the pure component parame- 

er fit (cf., Section 3 ), we predict the mixed solvent dielectric con- 

tants ε r for the mixtures methanol–water and ethylene glycol–

ater. 

.1. Mixture: Methanol–water 

In Fig. 6 , the mixed solvent dielectric constant ε r is illustrated 

or various mole fractions of methanol x MeOH and four temper- 

tures in the range 293.15 K to 473.15 K. With 4.0 %, the MARD 

f the mixture predictions for methanol–water is 3.0 percentage 

oints higher than for the pure component fits at similar tem- 

eratures ( Table 2 ). The predictions for data points from Smith 

t al. [49] are less accurate than for the data points from Aker- 

öf [50] and Teutenberg et al. [51] . 
6 
The results of the presented model are compared to the com- 

on linear mixing rules ( Table 2 ), which mix the pure com- 

onent dielectric constants ε r ,i based on the composition �i 

cf., Equation (1) ). In Equation (1) , the composition �i can be 

he mole fraction �x ,i , the mass fraction �w ,i , or the volume frac- 

ion �v ,i . 

The linear mixing rules require data for the pure component 

ielectric constants. Because the experimental data for the pure 

omponent dielectric constant is not available for each data series 

nder study, we use the pure component dielectric constants ε r ,i 
btained from the presented model for the linear mixing rule. 

The linear molar mixing rule leads to an MARD of 10.6 %, the 

inear mass-based mixing rule to an MARD of 2.5 %, and the linear 

olume-based mixing rule to an MARD of 3.6 %. Thus, the mass- 

ased, the volume-based, and the presented model yield similar 

ccuracies, while the MARD of the molar mixing rule is two to four 

imes higher. The predictions using the linear molar mixing rule 

re particularly weak for the equimolar mixture (cf., Fig. 6 ). 

.2. Mixture: Ethylene glycol–water 

The mixed solvent dielectric constant ε r is analyzed for ethy- 

ene glycol–water depending on the mole fraction of ethylene gly- 

ol x EG for eight temperatures in the range of 278.15 K to 373.15 K 

 Fig. 7 ). For ethylene glycol, only the dipole density scaling param- 

ter a 1 ,i is fitted to one data point, while the correlation integral 

arameter a 2 ,i is set equal to the value of water (cf., Section 3.3 ). 

With an MARD of 2.6 %, the prediction accuracy for the mix- 

ure ethylene glycol–water is in the same order of magnitude as for 

ethanol–water. In particular, the model accurately extrapolates in 

emperature, highlighting the predictive power of the model. 
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Fig. 7. Mixed solvent dielectric constant ε r for ethylene glycol-water over the 

mole fraction of ethylene glycol x EG . The experimental data stems from Aker- 

löf [50] (crosses), Corradini et al. [52] (dots), and George and Sastry [53] (triangles). 

The model results from this work are shown as solid lines. The grey star and the 

grey line show the single fit point and the model results at the temperature of sin- 

gle fit point, respectively. 
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Fig. 8. Mixed solvent dielectric constant ε r for ethylene glycol-water over the mole 

fraction of ethylene glycol x EG with model from Equations (8) and (20) . The ex- 

perimental data stems from Akerlöf [50] (crosses), Corradini et al. [52] (dots), and 

George and Sastry [53] (triangles). The model results (solid lines) are calculated us- 

ing a binary parameter of ψ i j = −0 . 0612 to correct the scaled dipole density y ∗ (cf., 

Equation (20) ). 
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Similarly to the mixture methanol–water, the accuracy of the 

redictions using the linear mass-based mixing rule (MARD of 

.0 %), linear volume-based mixing rule (MARD of 3.0 %), and the 

roposed model (MARD of 2.6 %) are similar, while the linear molar 

ixing rule yields less accurate results (MARD of 8.6 %). In contrast 

o methanol–water, the most accurate predictions are achieved by 

ur model ( Table 2 ). Overall, our model achieves a good accuracy 

or predicting mixed solvent dielectric constants even in the case 

f scarce data availability. 

The analysis of the accuracy does not yield a clear preference 

or our model, the linear mass-based, and the linear volume-based 

ixing rule. In contrast, the linear molar mixing rule is least accu- 

ate. However, the linear mixing rules have conceptual deficiencies 

f the pure components are not stable in the same phase (at given 

emperature and pressure) as the regarded mixture (cf., Section 1 ). 

dditionally, the linear mixing rules need many experimental data 

r other models for the pure component dielectric constants ε r ,i , 
hile our model provides a unified framework for determining di- 

lectric constants ε r of pure solvents and solvent mixtures. In par- 

icular, the lean parametrization and the extrapolation capability 

re promising for predictive contexts, e.g., solvent screenings or 

omputer-aided molecular design. 

.3. Model refinement using a binary parameter 

If experimental data for the mixed solvent dielectric constant ε r 
s available, the proposed model from Equation (8) can be refined 

y introducing a binary parameter ψ i j = ψ ji for the scaled dipole 

ensity y ∗ of a mixture of the components i and j. This binary pa-

ameter ψ i j is fitted to the experimental data for the mixed sol- 

ent dielectric constant ε r . The expression for the scaled dipole 

ensity y ∗ from Equation (16) is modified as 

 

∗ = 

4 π

9 

βρ
n ∑ 

i =1 

n ∑ 

j=1 

x i x j 
a 1 ,i μ

2 
i 

+ a 1 , j μ
2 
j 

2 

· (1 − ψ i j ) (20) 

ith the reciprocal of the thermodynamic temperature β , the 

ixture density ρ , the mole fractions x i and x j , the dipole den- 

ity scaling parameters a 1 ,i and a 1 , j , and the dipole moments μi 

nd μ j of components i and j, respectively. For i = j, the binary 

arameter ψ i j is set to 0 to ensure consistent pure component 

ielectric constants ε r ,i . If the binary parameter ψ i j is set to 0, 

quation (20) reduces to the original definition of the scaled 

ipole density y ∗ from Equation (16) . 
7 
For the mixture methanol–water, we fit the binary parame- 

er ψ i j to mixture data for the dielectric constant ε r from Aker- 

öf [50] , Smith et al. [49] , and Teutenberg et al. [51] . We obtain an

ptimal binary parameter of ψ i j = −0 . 0635 improving the MARD 

rom 4.0 % to 2.9 %. The overall improvement of the model is rather 

ow. However, it is noteworthy that the deviations to data from Ak- 

rlöf [50] and from Smith et al. [49] are substantially decreased, 

hereas the data from Teutenberg et al. [51] is not described well. 

For the mixture ethylene glycol–water, we use mixture data for 

he dielectric constant ε r from Akerlöf [50] , Corradini et al. [52] , 

nd George and Sastry [53] . The resulting optimal binary parame- 

er of ψ i j = −0 . 0612 reduces the MARD from 2.6 % to 0.7 % ( Fig. 8 ).

In conclusion, introducing a binary parameter ψ i j adds an ad- 

itional model parameter, but can significantly improve the model 

ccuracy if experimental data is available for the mixed solvent di- 

lectric constant ε r : for the mixture methanol–water, the MARD 

s reduced by 28 % and for the mixture ethylene glycol–water by 

ven more than 70 % compared to the purely predictive model for 

he mixture ( ψ i j = 0 ). However, experimental data for the mixed 

olvent dielectric constant ε r is available only for a limited num- 

er of mixtures. If no experimental data is available for the mixed 

olvent dielectric constant ε r , convincing results can be obtained 

sing the proposed model without binary parameter ( ψ i j = 0 ) 

cf., Sections 4.1 and 4.2 ). 

. Conclusion 

This work presents a model for the dielectric constant ε r of 

ure substances and solvent mixtures based on perturbation the- 

ry. For this purpose, we modify the model by Tani et al. [31] for

eal fluids and extend it to mixtures. As a result, we obtain a model 

hich is third order in the dimensionless dipole density y . For each 

ure component, two parameters are fitted to experimental data 

f the dielectric constant ε r : the dipole density scaling parameter 

 1 ,i and the correlation integral parameter a 2 ,i . For mixtures, mix- 

ng rules are proposed based on the partial dipole density (for a 1 ,i ) 

nd on the mole fraction (for a 2 ,i ). Thus, the dielectric constant ε r 
f mixed solvents can be predicted solely based on pure compo- 

ent parameters and the density of the mixture. 

In the case of scarce experimental data availability, e.g., in the 

ontext of predictive electrolyte thermodynamics, we demonstrate 

or ethylene glycol that fitting only the dipole density scaling pa- 

ameter a 1 ,i to one data point and taking the correlation integral 

arameter a 2 ,i of water can still lead to very good results. 
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The presented model has a sound physical basis, a lean 

arametrization and can easily be integrated into existing elec- 

rolyte equations of state. The model can be refined by introducing 

 binary parameter ψ i j fit to mixture data if available. 

We use the presented model to predict the mixed solvent di- 

lectric constant ε r for methanol–water and ethylene glycol–water. 

he model achieves accurate predictions for both mixtures under 

tudy: the mean absolute relative deviation is 4.0 % for methanol–

ater and 2.6 % for ethylene glycol–water. Furthermore, the pre- 

iction of the mixed solvent dielectric constant is largely improved 

ompared to the linear molar mixing rule. Compared to the linear 

ass-based and volume-based mixing rules, comparable accuracies 

re observed. Even in the case of scarce experimental data avail- 

bility, the presented model shows good extrapolation capability 

ighlighting the high predictive power of our presented model. In 

he future, we plan to extend the model to account for the influ- 

nce of ionic species on the dielectric constant. 
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