001     905566
005     20220131120335.0
037 _ _ |a FZJ-2022-00807
041 _ _ |a English
100 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Plant Biology Europe 2021
|c Turin
|d 2021-06-28 - 2021-07-01
|w Italy
245 _ _ |a Carbon dynamics in nodulated pea root systems: 3D imaging andquantification with short lived isotopes
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1642769970_21862
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Legumes associate with root colonizing rhizobia that provide atmospheric nitrogen to its plant host in exchange for recently fixed carbon. While much of the nodulation process and its regulation is now understood, there is a lack in understanding how plants modulate carbon allocation to a nodulated root system as a dynamic response to abiotic stimuli. One reason is that most approaches are based on destructive sampling, making investigation of localized carbon allocation dynamics in the root system difficult. We employed non-invasive Positron Emission Tomography (PET) to follow the allocation of leaf-supplied 11C tracer towards individual nodules in a three-dimensional (3D) root system of pea (Pisum sativum). Nitrate was applied to the root system to rapidly shut down biological nitrogen fixation and follow the effect on carbon allocation dynamics. This treatment lead to a reduction of 11C tracer allocation to nodules by 40% - 47% in 5 treated plants within 42h while the change in control plants was less than 11%. Our study demonstrates the strength of using 11C tracers in a PET approach for non-invasive quantification of dynamic carbon allocation in growing plants over several days. A major advantage of the approach is the possibility to investigate carbon dynamics in small regions of interest in a 3D system such as nodules in comparison to whole plant development.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 1
|u fzj
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)5963
|b 2
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 3
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 4
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 5
|u fzj
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 6
|u fzj
700 1 _ |a Jahnke, Siegfried
|0 P:(DE-Juel1)129336
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:905566
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129336
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21