001     905607
005     20230127125339.0
024 7 _ |a 10.5194/gmd-2022-2
|2 doi
024 7 _ |a 2128/30446
|2 Handle
024 7 _ |a altmetric:121197969
|2 altmetric
037 _ _ |a FZJ-2022-00839
082 _ _ |a 910
100 1 _ |a Betancourt, Clara
|0 P:(DE-Juel1)171435
|b 0
|e First author
245 _ _ |a Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
260 _ _ |a Katlenburg-Lindau
|c 2022
|b Copernicus
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1642779648_11563
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Abstract. Tropospheric ozone is a toxic greenhouse gas with a highly variable spatial distribution which is challenging to map on a global scale. Here we present a data-driven ozone mapping workflow generating a transparent and reliable product. We map the global distribution of tropospheric ozone from sparse, irregularly placed measurement stations to a high-resolution regular grid using machine learning methods. The produced map contains the average tropospheric ozone concentration of the years 2010–2014 with a resolution of 0.1° × 0.1°. The machine learning model is trained on AQ-Bench, a precompiled benchmark dataset consisting of multi-year ground-based ozone measurements combined with an abundance of high-resolution geospatial data. Going beyond standard mapping methods, this work focuses on two key aspects to increase the integrity of the produced map. Using explainable machine learning methods we ensure that the trained machine learning model is consistent with commonly accepted knowledge about tropospheric ozone. To assess the impact of data and model uncertainties on our ozone map, we show that the machine learning model is robust against typical fluctuations in ozone values and geospatial data. By inspecting the feature space, we ensure that the model is only applied in regions where it is reliable. We provide a rationale for the tools we use to conduct a thorough global analysis. The methods presented here can thus be easily transferred to other mapping applications to ensure the transparency and reliability of the maps produced.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |a AI Strategy for Earth system data (kiste_20200501)
|0 G:(DE-Juel1)kiste_20200501
|c kiste_20200501
|f AI Strategy for Earth system data
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stomberg, Timo T.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Edrich, Ann-Kathrin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 3
|u fzj
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 4
700 1 _ |a Roscher, Ribana
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kowalski, Julia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)180752
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.5194/gmd-2022-2
|0 PERI:(DE-600)2456729-2
|x 1991-9611
|y 2022
|t Geoscientific model development discussions
856 4 _ |u https://juser.fz-juelich.de/record/905607/files/gmd-2022-2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905607
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171435
910 1 _ |a Universität Bonn
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)6952
910 1 _ |a Universität Bonn
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Technische Universität München
|0 I:(DE-588b)36241-4
|k TUM
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)180752
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21