001     905636
005     20230123110554.0
024 7 _ |a 10.1088/2632-2153/ac3dde
|2 doi
024 7 _ |a 2128/30460
|2 Handle
024 7 _ |a altmetric:119964062
|2 altmetric
024 7 _ |a WOS:000734632600001
|2 WOS
037 _ _ |a FZJ-2022-00863
082 _ _ |a 621.3
100 1 _ |a Clavijo, J. M.
|0 0000-0003-3210-1722
|b 0
|e Corresponding author
245 _ _ |a Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier
260 _ _ |a Bristol
|c 2022
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672835745_27125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a supervised high energy physics events classifier training. We make use of a neural network containing event and domain classifier with a gradient reversal layer to simultaneously enable signal versus background events classification on the one hand, while on the other hand minimizing the difference in response of the network to background samples originating from different Monte Carlo models via adversarial domain classification loss. We show the successful bias removal on the example of simulated events at the Large Hadron Collider with $t\bar{t}H$ signal versus $t\bar{t}b\bar{b}$ background classification and discuss implications and limitations of the method.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ZT-I-PF-5-3 - Deep Generative models for fast and precise physics Simulation (DeGeSim) (2020_ZT-I-PF-5-3)
|0 G:(DE-HGF)2020_ZT-I-PF-5-3
|c 2020_ZT-I-PF-5-3
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Glaysher, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 2
|u fzj
700 1 _ |a Katzy, J. M.
|0 0000-0003-3121-395X
|b 3
|e Corresponding author
773 _ _ |a 10.1088/2632-2153/ac3dde
|g Vol. 3, no. 1, p. 015014 -
|0 PERI:(DE-600)3017004-7
|n 1
|p 015014
|t Machine learning: science and technology
|v 3
|y 2022
|x 2632-2153
856 4 _ |u https://juser.fz-juelich.de/record/905636/files/Clavijo_2022_Mach._Learn.%20_Sci._Technol._3_015014.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905636
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 0000-0003-3210-1722
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158080
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 0000-0003-3121-395X
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACH LEARN-SCI TECHN : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-04-14T14:43:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-04-14T14:43:49Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-04-14T14:43:49Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-04-14T14:43:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACH LEARN-SCI TECHN : 2021
|d 2022-11-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21