| Home > Publications database > Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier > print | 
| 001 | 905636 | ||
| 005 | 20230123110554.0 | ||
| 024 | 7 | _ | |a 10.1088/2632-2153/ac3dde |2 doi  | 
| 024 | 7 | _ | |a 2128/30460 |2 Handle  | 
| 024 | 7 | _ | |a altmetric:119964062 |2 altmetric  | 
| 024 | 7 | _ | |a WOS:000734632600001 |2 WOS  | 
| 037 | _ | _ | |a FZJ-2022-00863 | 
| 082 | _ | _ | |a 621.3 | 
| 100 | 1 | _ | |a Clavijo, J. M. |0 0000-0003-3210-1722 |b 0 |e Corresponding author  | 
| 245 | _ | _ | |a Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier | 
| 260 | _ | _ | |a Bristol |c 2022 |b IOP Publishing  | 
| 336 | 7 | _ | |a article |2 DRIVER  | 
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite  | 
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672835745_27125 |2 PUB:(DE-HGF)  | 
| 336 | 7 | _ | |a ARTICLE |2 BibTeX  | 
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID  | 
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote  | 
| 520 | _ | _ | |a We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a supervised high energy physics events classifier training. We make use of a neural network containing event and domain classifier with a gradient reversal layer to simultaneously enable signal versus background events classification on the one hand, while on the other hand minimizing the difference in response of the network to background samples originating from different Monte Carlo models via adversarial domain classification loss. We show the successful bias removal on the example of simulated events at the Large Hadron Collider with $t\bar{t}H$ signal versus $t\bar{t}b\bar{b}$ background classification and discuss implications and limitations of the method. | 
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0  | 
| 536 | _ | _ | |a ZT-I-PF-5-3 - Deep Generative models for fast and precise physics Simulation (DeGeSim) (2020_ZT-I-PF-5-3) |0 G:(DE-HGF)2020_ZT-I-PF-5-3 |c 2020_ZT-I-PF-5-3 |x 1  | 
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de | 
| 700 | 1 | _ | |a Glaysher, P. |0 P:(DE-HGF)0 |b 1  | 
| 700 | 1 | _ | |a Jitsev, Jenia |0 P:(DE-Juel1)158080 |b 2 |u fzj  | 
| 700 | 1 | _ | |a Katzy, J. M. |0 0000-0003-3121-395X |b 3 |e Corresponding author  | 
| 773 | _ | _ | |a 10.1088/2632-2153/ac3dde |g Vol. 3, no. 1, p. 015014 - |0 PERI:(DE-600)3017004-7 |n 1 |p 015014 |t Machine learning: science and technology |v 3 |y 2022 |x 2632-2153  | 
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/905636/files/Clavijo_2022_Mach._Learn.%20_Sci._Technol._3_015014.pdf |y OpenAccess  | 
| 909 | C | O | |o oai:juser.fz-juelich.de:905636 |p openaire |p open_access |p VDB |p driver |p dnbdelivery  | 
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 0000-0003-3210-1722  | 
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)158080  | 
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 0000-0003-3121-395X  | 
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0  | 
| 914 | 1 | _ | |y 2022 | 
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC  | 
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID  | 
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-03  | 
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-03  | 
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MACH LEARN-SCI TECHN : 2021 |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-04-14T14:43:49Z  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-04-14T14:43:49Z  | 
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-04-14T14:43:49Z  | 
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2020-04-14T14:43:49Z  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-10  | 
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-10  | 
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-10  | 
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MACH LEARN-SCI TECHN : 2021 |d 2022-11-10  | 
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-10  | 
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-10  | 
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0  | 
| 980 | _ | _ | |a journal | 
| 980 | _ | _ | |a VDB | 
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 | 
| 980 | _ | _ | |a UNRESTRICTED | 
| 980 | 1 | _ | |a FullTexts | 
| Library | Collection | CLSMajor | CLSMinor | Language | Author | 
|---|