001     905640
005     20240711113902.0
024 7 _ |a 10.1088/1741-4326/abdb94
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a altmetric:101297994
|2 altmetric
024 7 _ |a WOS:000629939700001
|2 WOS
037 _ _ |a FZJ-2022-00867
082 _ _ |a 620
100 1 _ |a Brenzke, M.
|0 P:(DE-Juel1)176477
|b 0
|e Corresponding author
245 _ _ |a Divertor power load predictions based on machine learning
260 _ _ |a Vienna
|c 2021
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642784637_18986
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a kein Zugriff auf Postprint
520 _ _ |a Machine learning based data-driven approaches to thermal load prediction on the divertor targets of ASDEX upgrade (AUG) are presented. After selecting time averaged data from almost six years of operation of AUG and applying basic physics-motivated cuts to the data we find that we are able to train machine learning models to predict a scalar quantifying the steady state thermal loads on the outer divertor target given scalar operational parameters. With both random forest and neural network based models we manage to achieve decent agreement between the model predictions and the observed values from experiments. Furthermore, we investigate the dependencies of the models and observe that the models manage to extract trends expected from previous physics analyses.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 1
700 1 _ |a Bernert, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Coster, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 4
|u fzj
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 5
|u fzj
700 1 _ |a von Toussaint, U.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a ASDEX Upgrade Team
|0 P:(DE-HGF)0
|b 7
700 1 _ |a EUROfusion MST1 Team
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1088/1741-4326/abdb94
|g Vol. 61, no. 4, p. 046023 -
|0 PERI:(DE-600)2037980-8
|n 4
|p 046023 -
|t Nuclear fusion
|v 61
|y 2021
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/905640/files/Brenzke_2021_Nucl._Fusion_61_046023.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:905640
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158080
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130088
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 1
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21