001 | 905640 | ||
005 | 20240711113902.0 | ||
024 | 7 | _ | |a 10.1088/1741-4326/abdb94 |2 doi |
024 | 7 | _ | |a 0029-5515 |2 ISSN |
024 | 7 | _ | |a 1741-4326 |2 ISSN |
024 | 7 | _ | |a altmetric:101297994 |2 altmetric |
024 | 7 | _ | |a WOS:000629939700001 |2 WOS |
037 | _ | _ | |a FZJ-2022-00867 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Brenzke, M. |0 P:(DE-Juel1)176477 |b 0 |e Corresponding author |
245 | _ | _ | |a Divertor power load predictions based on machine learning |
260 | _ | _ | |a Vienna |c 2021 |b IAEA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642784637_18986 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a kein Zugriff auf Postprint |
520 | _ | _ | |a Machine learning based data-driven approaches to thermal load prediction on the divertor targets of ASDEX upgrade (AUG) are presented. After selecting time averaged data from almost six years of operation of AUG and applying basic physics-motivated cuts to the data we find that we are able to train machine learning models to predict a scalar quantifying the steady state thermal loads on the outer divertor target given scalar operational parameters. With both random forest and neural network based models we manage to achieve decent agreement between the model predictions and the observed values from experiments. Furthermore, we investigate the dependencies of the models and observe that the models manage to extract trends expected from previous physics analyses. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wiesen, S. |0 P:(DE-Juel1)5247 |b 1 |
700 | 1 | _ | |a Bernert, M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Coster, D. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Jitsev, Jenia |0 P:(DE-Juel1)158080 |b 4 |u fzj |
700 | 1 | _ | |a Liang, Yunfeng |0 P:(DE-Juel1)130088 |b 5 |u fzj |
700 | 1 | _ | |a von Toussaint, U. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a ASDEX Upgrade Team |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a EUROfusion MST1 Team |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1088/1741-4326/abdb94 |g Vol. 61, no. 4, p. 046023 - |0 PERI:(DE-600)2037980-8 |n 4 |p 046023 - |t Nuclear fusion |v 61 |y 2021 |x 0029-5515 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905640/files/Brenzke_2021_Nucl._Fusion_61_046023.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:905640 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176477 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)5247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)158080 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130088 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL FUSION : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|