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Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems
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We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the
nonlinear regime for measurements of time-dependent gravitational fields. Using recently developed methods to
solve the dynamics of a nonlinear optomechanical system with a time-dependent Hamiltonian, we compute the
quantum Fisher information for linear displacements of the mechanical element due to gravity. We demonstrate
that the sensitivity cannot only be further enhanced by injecting squeezed states of the cavity field, but also
by modulating the light–matter coupling of the optomechanical system. We specifically apply our results to
the measurement of gravitational fields from small oscillating masses, where we show that, in principle, the
gravitational field of an oscillating nanogram mass can be detected based on experimental parameters that will
likely be accessible in the near-term future. Finally, we identify the experimental parameter regime necessary for
gravitational wave detection with a quantum optomechanical sensor.
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I. INTRODUCTION

Precision measurements of gravitational effects allow for
new technological advancements and for hitherto uncharted
regimes of physics to be explored. In particular, the recent
detection of gravitational waves by the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) collaboration [1]
has enabled the establishment of the field of gravitational
astrophysics [2]. At the other end of the scale, fundamen-
tal tests of gravity using optomechanical systems have been
proposed, including tests for gravitational decoherence [3,4],
and measurements of the gravitational field from extremely
small masses in quantum superpositions. Performing these
experiments could help probe the overlap between quan-
tum mechanics and the low-energy limit of quantum gravity
[5–11]. Both endeavors are set to benefit from advances in
quantum metrology [12], where the inclusion of nonclassical
states promises to push the sensitivity even further. This is
already the case for LIGO, where the addition of squeezed
light has significantly reduced the noise in the system [13].
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Cavity optomechanics [14] represents a promising plat-
form for developing high performance quantum sensors.
These systems consist of light interacting with a small me-
chanical element, such as a moving-end mirror [15] or a
levitated sphere [16]. In recent years, a diverse set of platforms
including systems with Brillouin scattering [17–19], nanome-
chanical rotors [20], whispering-gallery-mode optomechanics
[21,22], and superconducting devices [23] have been studied
from both a theoretical and experimental point-of-view. When
a mechanical mode is cooled to a sufficiently low temperature,
it enters into a quantum state, which allows for properties such
as entanglement and coherence to be used for the purpose of
sensing [24].

Precision measurements of gravitational acceleration—
also known as gravimetry—with quantum optomechanical
systems in the nonlinear regime have been theoretically
considered for measurements of constant gravitational accel-
erations [25,26]. However, constant signals are experimentally
difficult to detect as they cannot be easily distinguished from
a random noise floor. On the other hand, until recently it was
not known how to solve the dynamics of fully time-dependent
systems in the nonlinear regime. This prevented the careful
analysis of the measurement of time-varying signals, which
can provide significant advantages through the use of resonant
effects.

The closed dynamics of time-dependent optomechanical
systems was recently solved in [27], and a general expres-
sion for the sensitivity of an optomechanical system with
a time-dependent coupling and time-dependent mechanical
displacement terms was derived in [28]. In this work we go

2643-1564/2021/3(1)/013159(28) 013159-1 Published by the American Physical Society

https://orcid.org/0000-0003-2281-1042
https://orcid.org/0000-0002-3816-5439
https://orcid.org/0000-0002-4509-7470
https://orcid.org/0000-0003-3452-6222
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013159&domain=pdf&date_stamp=2021-02-18
https://doi.org/10.1103/PhysRevResearch.3.013159
https://creativecommons.org/licenses/by/4.0/


SOFIA QVARFORT et al. PHYSICAL REVIEW RESEARCH 3, 013159 (2021)

beyond the results in [28] by deriving fundamental bounds
to measurements of time-dependent gravitational fields and
considering enhancements to the fundamental sensitivity.
We apply our methods to three specific examples: generic
gravimetry of oscillating fields, the detection of the gravi-
tational field from small oscillating source masses, and the
detection of gravitational waves. The computations are per-
formed for both coherent and bright squeezed states of the
light. We ask whether the intrinsic properties of the optome-
chanical probe system, such as the form of the light–matter
coupling, can be employed to further enhance the sensitivity.
This is motivated by the fact that the nonlinearities in the op-
tomechanical coupling can be significantly enhanced by either
separately or jointly modulating the mechanical frequency
and the light–matter coupling [29,30]. Such modulations have
been demonstrated, e.g., in nanomechanical setups [31] or
with levitated nanoparticles, such as in hybrid-Paul trap sys-
tems [32–34]. We find that such a modulation, performed
at or close to resonance, significantly enhances the system
sensitivity. A similar result holds when the trapping frequency
is modulated at parametric resonance (twice the mechanical
frequency), which has been shown in [35].

To relate our scheme to realistic laboratory measurements,
we also compute the sensitivity bounds for homodyne and
heterodyne detection of the cavity state. While it was known
that homodyne detection is optimal for constant gravitational
fields and coherent states of the light in the cavity [25], here
we show that it remains optimal for time-varying gravitational
fields using initially coherent states of the optical mode (re-
ferred to as “optics” for short in the following), as well as
asymptotically optimal for squeezed states.

The work is structured as follows. In Sec. II we intro-
duce the optomechanical Hamiltonian and demonstrate how
an external gravitational source enters into the dynamics. We
outline the solution to the dynamics in Sec. II. Following that,
we compute the quantum Fisher information for initial coher-
ent states and squeezed states in Sec. III and discuss when
the optical and mechanical degrees-of-freedom disentangle,
since this allows us to focus exclusively on the sensitivity
based on measurements of the cavity state. We then present
our main results, which include expressions for the funda-
mental sensitivities in Sec. IV. Next, we consider homodyne
and heterodyne measurement schemes in Sec. V. Finally, we
apply our results and consider realistic parameters for three
measurement schemes in Sec. VI: (i) generic gravimetry of
time-dependent signals, (ii) detection of gravitational fields
from small masses, and (iii) detection of gravitational waves.
The paper is concluded with a discussion covering some of
the practical implementations of an optomechanical sensor in
Sec. VII and some closing remarks in Sec. VIII.

II. THE SYSTEM

The standard optomechanical Hamiltonian for a single in-
teracting optical and mechanical mode is given by

Ĥ = h̄ωc â†â + h̄ωm b̂†b̂ − h̄k â†â (b̂† + b̂), (1)

where â, â† and b̂, b̂† are the creation and annihilation opera-
tors of the cavity field and mechanical oscillator, respectively,
satisfying [â, â†] = 1 and [b̂, b̂†] = 1, where and ωc and ωm

FIG. 1. The influence of a time-dependent gravitational acceler-
ation on a Fabry-Pérot moving-end mirror. A small source sphere
with mass mS oscillates with frequency ωg and creates an oscillating
gravitational field, which drives the center of mass motion of the
mechanical part of the optomechanical system with frequency ωm.

are the optical and mechanical frequencies. The light–matter
coupling is denoted k, and its precise form depends on the
experimental platform in question.1

We consider the case where an external gravitational signal
affects the mechanical element, which gives rise to an ad-
ditional potential term in (1). However, this is not the only
change to (1) that we consider, as will become clear later.
By expanding the gravitational potential to first order, we
obtain the familiar expression mg(t )x̂m, where g(t ) is a time-
dependent gravitational acceleration and x̂m = x0(b̂† + b̂) is
a linear displacement of the mechanical element, with x0 =√

h̄/2mωm the zero-point fluctuation. While generic time-
dependent signals can be explored using the methods in [28],
here we restrict our analysis to gravitational signals g(t ) that
are sinusoidally modulated around a constant acceleration,
which accounts for all three examples that we model in this
work.

We write the gravitational acceleration as

g(t ) = −g0[a + ε cos(ωgt + φg)], (2)

where g0 is the overall amplitude of the acceleration, φg is an
arbitrary phase, a is a dimensionless constant contribution, ε

is a dimensionless oscillation amplitude, and ωg is the angular
frequency of the signal. This allows us, for example, to model
the gravitational field from an oscillating spherical source
mass, as illustrated in Fig. 1, where a = 1 and ε = 2δr0/r0,
with δr0 being the amplitude of the time-dependent oscillation
and r0 the mean separation (see the derivation in Appendix A).
We can also use (2) to model gravitational waves (or a setup
mimicking their effects using, for example, moving masses
[36]). To do so, we set a = 0 so that only the oscillating part
of the gravitational acceleration remains.

It is well known that resonances in physical systems can
be used to further enhance certain dynamical effects. We
therefore make a total of three changes to the standard op-
tomechanical Hamiltonian (1): (i) We add a gravitational term
g(t ), (ii) we promote the standard constant optomechanical
coupling k to a time-dependent one, and (iii) we let the me-
chanical frequency change as a function of time. The change
of the mechanical frequency (iii) can be modeled in two ways:
Either by changing the frequency ωm and thereby of b̂ and b̂†,

1This coupling is conventionally denoted by g or g0, but we here
reserve these symbols for the gravitational acceleration.
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which are defined with respect to this frequency, or by addi-
tion of the term D2(τ )(b̂† + b̂)2. In this work we choose the
latter approach, since it allows us to more easily compare this
scheme with the previously mentioned cases. The Hamilto-
nian in the frame rotating with the optical field then becomes

Ĥ = h̄ωm b̂†b̂ − h̄ωm[k(τ ) â†â − D1(τ )](b̂† + b̂)

+ h̄ωmD2(τ )(b̂† + b̂)2, (3)

where we adopt a rescaled time parameter τ = ωmt , and
the linear gravitational displacement term D1(τ ) becomes
[given (2)]

D1(τ ) = −d1[a + ε cos(�d1τ + φd1)], (4)

where �d1 = ωg/ωm, φd1 = φg, and where we now identify

d1 = mg0

h̄ωm

√
h̄

2ωmm
= g0

2x0ω2
m

. (5)

The optomechanical coupling k(τ ) depends on the specific
system under consideration. For example, for a Fabry-Pérot
cavity with a mechanical oscillator mirror, the coupling is a
constant k(τ ) ≡ k0 given by k0 = x0ωc/(Lωm ) [37], where L
is the length of the cavity. For levitated dielectric spheres,
the coupling takes the form k0 = P kc x0 ωc/(2ωm Vc ε0) [38],
where P is the polarizability of the sphere, given by P =
3V ε0(ε − 1)/(ε + 2), with volume V , relative permittivity ε,
and the cavity mode volume Vc. Furthermore, ε0 is the vacuum
permittivity, and kc = 2π/λc is the wave number of the light
field. A modulated spring constant k(τ ) is experimentally
feasible for Fabry-Pérot systems by positioning an electrode
with a time-varying voltage close to the cantilever [39]. For
a levitated nanosphere, a similar modulation arises from the
natural micromotion that occurs for certain hybrid Paul-trap
setups [32,40]. We later show that a modulation of the light–
matter coupling can be used to enhance the sensitivity of the
system for measurements of gravitational fields.

A. Solution of the dynamics

Our goal now is to solve the dynamics generated by (3).
The full solution was developed in [27,41]. We briefly
review the results here. In general, the time-evolution op-
erator is given by the time-ordered exponential Û (τ ) =←−T exp[−i

∫ τ

0 dτ Ĥ (τ ′)/(h̄ωm )]. By using an approach akin to
transforming to the interaction picture, Û (τ ) can be written as
the product

Û (τ ) = Ûsq(τ ) ÛNL(τ ), (6)

where

Ûsq = ←−T exp

[
− i

ωm

∫ τ

0
dτ ′[N̂b + D2(τ ′)

(
2 N̂b + B̂(2)

+
)]]

,

ÛNL = ←−T exp

[
− i

ωm

∫ τ

0
dτ Û †

sq ĤNL(τ ′) Ûsq

]
, (7)

where ĤNL = −k(τ )â†â(b̂† + b̂) + D1(τ )(b̂† + b̂), N̂b = b̂†b̂,
and B̂(2)

+ = b̂†2 + b̂2. Here Ûsq encodes both the free evolution
of the mechanical subsystem as well as the term multiplied

by D2(τ ), while ÛNL contains the remaining nonlinear light–
matter interaction term and the gravitational displacement
term.

Next, we use a Lie algebra approach to write the remaining
time-evolution operator ÛNL(τ ) as a product of unitary oper-
ators. This method was first proposed by Wei and Norman in
1963 [42] and has since been used to solve the dynamics of
a large variety of systems [43–46]. We identify the following
Lie algebra of generators, which is closed under commutation:

N̂2
a := (â†â)2,

N̂a := â†â, N̂b := b̂†b̂,

B̂+ := b̂† + b̂, B̂− := i (b̂† − b̂),

N̂a B̂+ := N̂a (b̂† + b̂), N̂a B̂− := i N̂a (b̂† − b̂). (8)

Similarly, it is possible to find a Lie algebra that generates the
time evolution encoded in Ûsq. It is made up of the following
operators [27]: N̂b, B̂(2)

+ = b̂†2 + b̂2, and B̂(2)
− = i(b̂†2 − b̂2).

Identifying the Lie algebra enables us to write down the
following Ansätze for the two time-evolution operators [27]:

Ûsq(τ ) = e−i Jb N̂b e−i J+ B̂(2)
+ e−i J− B̂(2)

− ,

ÛNL(τ ) = e−i FN̂a N̂a e−i FN̂2
a

N̂2
a e−i FB̂+ B̂+

× e−i FN̂a B̂+ N̂a B̂+ e−i FB̂− B̂− e−i FN̂a B̂− N̂a B̂− . (9)

By now equating the two Ansätze (9) with their respective
expressions in (7) and differentiating on both sides, we can use
the linear independence of the operators to obtain a number
of differential equations. Solving these, we find that the F
coefficients are given by integrals shown in (B4) in Appendix
B, and the J coefficients are similarly given by the expressions
in (B8). For explicit expressions of the functions k(τ ), D1(τ ),
and D2(τ ), it is then possible to solve the system either exactly
or numerically.

In this work we draw on analytic and perturbative solu-
tions developed in Refs. [27,28], which are briefly outlined in
Appendix B.

B. Initial states of the system

It is well known that the fundamental sensitivity of a de-
tector depends on the initial state of the system, and that
significant enhancements can be gained through the use of
nonclassical states. For optomechanical systems, ground-state
cooling has been demonstrated for a number of platforms
[24,47–49], however, the most realistic and practical state of
the mechanical oscillator is a thermal state. The total initial
state of the system is

ρ̂(0) = |ψc〉 〈ψc| ⊗
∞∑

n=0

tanh2n rT

cosh2 rT
|n〉 〈n| , (10)

where |ψc〉 is the initial optical state of the cavity and
the parameter rT is defined by the relation rT = tanh−1

{exp[−h̄ ωm/(2 kB T )]}, for which kB is Boltzmann’s constant
and T is the temperature.

In this work we consider two different cavity states:
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(i) A coherent state |μc〉 (accessible through laser driving),
where â |μc〉 = μc |μc〉. The average number of photons in the
cavity is |μc|2.

(ii) A squeezed coherent state |ζ , μc〉 = Ŝζ |μc〉
(also known as “bright squeezed state”) where Ŝζ =
exp[(ζ ∗â2 − ζ â†2)/2] with ζ = reiϕ . These states can be
prepared through parametric down-conversion [50], or
four-wave mixing in an optical cavity [51], and they have
recently been used to improve the sensitivity of LIGO [13].
Currently, squeezed optical states with r = 1.42 [52,53] and
even r = 1.73 [54] have been achieved in the laboratory.

It is known that a Fock state superposition given by
(|0〉 + |n〉)/

√
2, where â†â |n〉 = n |n〉, can be used to max-

imize the sensitivity of the system for a given maximum
excitation n [55,56]. However, it is difficult to prepare states
with large n (currently n = 4 has been experimentally demon-
strated [57]), and we therefore focus on (squeezed) coherent
states in this work.

III. QUANTUM METROLOGY OF LINEAR
DISPLACEMENTS

We are interested in the fundamental limits that optome-
chanical systems can achieve when sensing displacements
due to gravity. For this purpose we turn to tools in quantum
metrology.

A. Quantum Fisher information

In general, quantum metrology provides an ultimate bound
on the precision of measurements of a classical parameter θ . If
θ parametrizes a unitary quantum channel Ûθ , it is coded into
the state as ρ̂θ = Ûθ ρ̂in Û †

θ [12]. Then, given a specific input
state ρ̂in, it is possible to compute the quantum Cramér-Rao
bound (QCRB), which reads

Var(θ ) � 1

MI , (11)

where I is the quantum Fisher information (QFI) for the
parameter θ and M is the number of measurements, or input
probes [58]. The QCRB bound is optimized over all possible
(POVM) measurements and data analysis schemes with unbi-
ased estimators, and can be saturated in the limit of M → ∞.

For a unitary channel Ûθ , and for a mixed initial state given
by ρ̂(0) = ∑

n λn |λn〉 〈λn|, the QFI is given by [59,60]

I = 4
∑

n

λn
(〈λn| Ĥ2

θ |λn〉 − 〈λn| Ĥθ |λn〉2
)

− 8
∑
n �=m

λnλm

λn + λm
|〈λn| Ĥθ |λm〉|2, (12)

where Ĥθ = −iÛ †
θ ∂θÛθ . In our case, Ûθ is the time-evolution

operator in (6), which results from a gravitational signal af-
fecting the optomechanical system. The general form for the
global QFI for the Hamiltonian (3) was computed in [28].

We are interested in estimating parameters that appear in
the displacement function D1(τ ), which arises from the grav-
itational signal. We therefore pick d1 in (4) as our fiducial
estimation parameter, and by the chain rule, we can choose
to estimate any parameter that appears in d1. With this choice,

only three dynamical coefficients, FN̂a
, FB̂+ , and FB̂− , contain

the function D1 [see (B4) in Appendix B], meaning that all
other coefficients are zero when differentiated with respect
to d1.

It follows from Eq. (9) in [28] that the operator Ĥd1 is given
by

Ĥd1 = BN̂a + C+B̂+ + C−B̂−, (13)

where B and C± are coefficients defined by

B = − ∂d1 FN̂a
− 2 FN̂a B̂−∂d1 FB̂+ ,

C± = − ∂d1 FB̂± . (14)

The global QFI takes the form (see the derivation in
Appendix C)

I = 4
[
B2(�N̂a)2 + sech(2rT )

(
C2

+ + C2
−
)]

, (15)

where the variance of N̂a, (�N̂a)2 ≡ Var(N̂a) = 〈N̂2
a 〉 − 〈N̂a〉2,

and where the bracket 〈·〉 denotes the expectation value with
respect to one of the initial states presented in Sec. II A.
For the coherent state and the squeezed state, we find (see
Appendix C)

(�N̂a)2
μc

= |μc|2, (16)

(�N̂a)2
μc,ζ

= |μc|2e4r + 1
2 sinh2(2r)

− 2Re
[
e− iϕ

2 μc
]2

sinh(4r), (17)

where we recall that r and ϕ are the squeezing parameters
given by ζ = reiϕ . The angle ϕ is defined with respect to the
coherent state phase. The case of coherent states (r = 0) was
considered previously in [25,26,28].

For coherent states, a higher photon number |μc|2 yields
a better sensitivity. For squeezed coherent states, the QFI is
maximized when e

iϕ
2 μc is purely imaginary, and when the

photon number |μc|2 and r are maximized. In each case, the
increase in sensitivity is not without cost, as there are certain
restrictions to how much the mechanical element can be dis-
placed. See Sec. VII E for a discussion of these restrictions,
where we also propose order-of-magnitude limitations for the
parameters of the cavity field.

Once the QFI has been computed, we can obtain the op-
timal measurement sensitivity through the QCRB. Given the
dimensionless expression (4), we use the chain rule to find that
the sensitivity �g0 to the gravitational amplitude g0 [see the
expression in (2)] is

�g0 �
∣∣∣∣ d

dg0
d1

∣∣∣∣
−1 1√

MI
= 2x0ω

2
m√

MI
. (18)

In Sec. V we consider the classical Fisher information (CFI),
which provides the sensitivity given a specific measurement.
We now turn to the question of optimal timing of the measure-
ment.

B. Disentangling of the optics and mechanics

For Hamiltonians such as (3), it is well known that the
optical and mechanical subsystems evolve into an entangled
state [61], however, for particular choices of the dynamics,
we find that there are certain times when the two systems end
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up in a separable state. This is a consequence of the unitary
dynamics, and we refer to these times as τsep.

In an experiment it is often the case that an observ-
able on the cavity state is measured. If we can identify the
disentangling conditions and hence τsep, we can immediately
compute the QFI of the cavity state at these separation times. It
was also previously found that the global QFI peaks when the
states are separable, and that the noise contained in an initially
thermal mechanical state also does not affect the sensitivity at
this time [25,28].

From (6) we note that only the exponentials with FN̂a B̂+ and
FN̂a B̂− mediate entanglement between the cavity field and the
mechanics, since their accompanying generators N̂a B̂+ and
N̂a B̂− encode an interaction between the light and mechanical
oscillator (referred to as “mechanics” for short in the fol-
lowing). We therefore construct the function KN̂a

= FN̂a B̂− +
iFN̂a B̂+ , and express a sufficient condition for separability as∣∣KN̂a

∣∣2 = F 2
N̂a B̂−

+ F 2
N̂a B̂+

= 0. (19)

When this condition is fulfilled, the full time-evolution op-
erator Û (τ ) factorizes into terms that act exclusively on the
optical and mechanical states. The part acting on the cavity

state is given by Ûc(τ ) = Ûsq(τ ) e−i FN̂2
a

N̂2
a e−i FN̂a N̂a . For later,

we note that, when applied to a coherent state |μc〉, the last
exponential induces a phase, such that the new coherent state
parameter is μ̃c = μc e−iFN̂a . This definition will become use-
ful to us when we discuss homodyne measurements of the
cavity field in Sec. V.

The advantage of identifying the conditions for |KN̂a
|2 = 0

is that we can derive an analytic expression for the fundamen-
tal sensitivity that can be achieved by measuring the cavity
state. We also do not have to concern ourselves with any
contributions from the initial thermal mechanical state. The
QFI of the optical state is then simply [from (14) and (15)]

Ic = 4
(
∂d1 FN̂a

)2
(�N̂a)2, (20)

where we use the subscript “c” to denote the fact that this
refers to the QFI of the cavity state only.

To determine when the condition in (19) is satisfied, we
must evaluate the expression for a given dynamics. First, we
note that the form of the gravitational acceleration [deter-
mined by the function D1(τ )] does not affect the entanglement
between the systems. This is because D1(τ ) does not feature
in the integrals for FN̂a B̂+ and FN̂a B̂− [see the expressions
in (B4)].

In contrast, the optomechanical coupling k(τ ) and the
squeezing function D2(τ ) completely determine the times τsep

at which the two systems become separable. For a constant
optomechanical coupling k(τ ) ≡ k0, the states reach their
maximum entanglement at τ = π , after which they return to a
separable state at τsep = 2π [25,61]. We can prove this explic-
itly by computing FN̂a B̂+ and FN̂a B̂− for a constant coupling,

and we find that |KN̂a
|2 = 2k2

0 (1[− cos(τ )], which vanishes
when τ is a multiple of 2π .

When the coupling k(τ ) is time dependent, however, the
behavior of the system—and the entanglement—becomes
richer. As we are interested in whether a modulated coupling
can lead to resonance type enhancements, a natural choice is

to assume it takes on the form [30]

k(τ ) = k0 cos(�kτ + φk ), (21)

where �k is the oscillation frequency divided by ωm and φk is
an arbitrary phase. For zero mechanical squeezing (D2 = 0),
the F coefficients are given in (B10), and KN̂a

is given in (D1).
When the optomechanical coupling is modulated at resonance
with �k = 1, we find that the light and mechanical oscilla-
tor never disentangle. This means that we cannot ignore the
mechanical contribution to the QFI, and since computing the
QFI for a reduced state is challenging, we resort to the global
expression in (15) as an upper bound.

A key observation however, is that for specific choices
of the coupling modulation frequencies, the light and me-
chanics do disentangle at certain points in the evolution. In
Appendix D we prove that when the frequencies take on a
fractional form �frac = 1 + 2n1/s, for n1 and s integers (s
positive), the subsystems decouple at times that are multiples
of τsep = sπ . This means that the QFI for the cavity state is
given again by (20).

Finally, for a mechanical frequency modulated with
D2 = d2 cos(2τ + φd2), we find no point where the system is
completely separable (see Fig. 2).

IV. GRAVIMETRY OF TIME-DEPENDENT
GRAVITATIONAL FIELDS

We are now in a position to evaluate the QFI explicitly for
a number of cases of interest. Throughout we assume that the
gravitational signal is given by the time-dependent expression
in (4). Furthermore, we keep the optomechanical coupling
constant for now with k(τ ) ≡ k0, and we assume that the
mechanical squeezing is zero. In Sec. III B we showed that for
this choice of dynamics, the light and mechanical oscillator
disentangle whenever the time τ is a multiple of 2π .

We therefore find that (see Appendix C 2) at resonance
with �d1 = 1 and at time τc = 2nπ with integer n, the global
QFI becomes

I (�d1=1) = 4 π2n2 k2
0 (�N̂a)2[2a − ε cos(φd1)]2

+ (2πn)2ε2sech(2rT ), (22)

which is maximized over φd1 for φd1 = π . This is a phase
relation between the driving signal, which excites oscillations
of the mechanics, and the light–matter coupling term, which
fixes the decoupling times. The much longer form of the QFI
for a general frequency �d1 is shown in (C20) in Appendix C.

In a classical setting we expect that driving the mechani-
cal element on resonance will rapidly increase its oscillation
amplitude, which means that it becomes easier and easier to
detect its displacement. We do see this increase in the ∼n2

scaling of the second term of (22). However, this term is
usually small compared with the first term, since both scale
with ∼n2 and the first term scales with the photon number
variance (�N̂a)2.

To focus on this point, we consider the cavity state QFI (20)
at times when the light and mechanics evolve into a separable
state. For a purely oscillating field with a = 0, the local QFI
for measurements of the cavity field becomes

I (�d1=1)
c = (4πn)2 k2

0 ε2 (�N̂a)2. (23)
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FIG. 2. Disentangling conditions for the light and mechanics.

When the function |KN̂a
|2 = F 2

N̂a B̂−
+ F 2

N̂a B̂+
is zero, the state is

separable. (a) A plot of |KN̂a
|2 [shown in (D1)] for a modulated op-

tomechanical coupling [specified in (21)] with different frequencies
�frac = 1 + 2n1/s and with k0 = n1 = 1. The resonant case �k = 1

(not shown) never evolves into a separable state, while |KN̂a
|2 van-

ishes at multiples of τ = sπ for �frac = 3 (blue solid line), �frac = 2
(green dashed line), and �frac = 5/3 (magenta dotted line). (b) A
plot of 2 log |KN̂a

| for a modulated squeezing with d2 = 0.01 and
a constant optomechanical coupling k0 = 1. At no point within the
shown time interval does the states evolve into a separable state.

When ε = 1, this is in fact smaller than the constant driving
scenario (with a = 1) by a factor of 4. So, while resonant
driving does increase the global and local QFI over time, as
one would intuitively expect, this is primarily through the
amplitude change of the mechanical element. As such, it does
not translate directly to observations on the cavity field. It
turns out, however, that an analogous enhancement can be
passed to the field provided modulations are introduced to
the system in a different way. In this section we consider two
additional methods by which this can be done: Modulating
the optomechanical light–matter interaction, and modulating
the trapping frequency. We return to (23) later on and use it to
compare the effects of the enhancements.

We also note here that when the optical and mechanical
elements are disentangled, the sensitivity that can be obtained
from the cavity state alone does not depend on the thermal
noise present in the initial mechanical state. For nonunitary
dynamics, however, we expect the system to thermalize and
decohere, which generally prevents the subsystems from com-
pletely disentangling.

A. Enhanced sensing through optomechanical modulation

We are interested in whether the form of the light–matter
coupling k(τ ) can be used to enhance the sensitivity of the sys-
tem. Such a time-modulated coupling has been experimentally
demonstrated [31,39,62]. We specifically consider a coupling
of the form shown in (21). The global QFI for a resonant
gravitational signal at arbitrary times can be found in (C21),
and it is dominated by terms proportional to n4 for large τ

when (φd1 − φk )/π is not an integer. Should coherence be
maintained for long periods of time, the resonantly modu-
lated coupling leads to rapid increases in the measurement
precision.

For mechanical resonance (�k = �d1 = 1) we noted be-
fore that the light and the mechanics do not disentangle at
all. This means that the QFI is global at all times, and there-
fore does not necessarily reflect the sensitivity that could be
realistically obtained in the laboratory through measurements
of the optical state. For multiples of the mechanical period
τc,n = 2πn, the global QFI becomes

I (�d1,k=1) = π2n2k2
0 (�N̂a)2{4a cos(φk )

+ ε[2πn sin(φd1 − φk ) + 2 cos(φd1 + φk )

− cos(φd1−φk )]}2+(2πn)2ε2sech(2rT ). (24)

The full expression for arbitrary τ is given in (C22). We note
that the term multiplied by ε provides an additional scaling
with n2, leading to an overall scaling of n4. Such an enhance-
ment is only present when the gravitational field is oscillating
with nonzero ε, and indicates that the two resonances (the
gravitational signal and the optomechanical coupling, reso-
nant with the mechanical frequency) constructively enhance
the sensitivity. This is optimized when φd1 − φk = π/2. Fur-
thermore, the term multiplied by a is maximized for φk = 0,
so we can choose φd1 = π/2 to optimize the expression.

For a purely oscillating gravitational field a = 0 and a large
temperature rT → ∞, then setting φd1 = π/2 and φk = 0,
simplifies the expression in (24) to

I (�d1,k=1) = 4π4n4k2
0 ε2 (�N̂a)2, (25)

which, compared with a constant coupling, is an improvement
of ∼n2π2/4 for purely oscillating fields (23).

The global QFI is generally not accessible in an experi-
mental setting, since it is difficult to measure the mechanical
element directly. However, we saw in Sec. III B that the light
and mechanical oscillator become separable for very specific
choices of the frequency �k , which we referred to as the
fractional frequencies �frac. With this choice we compute the
local QFI for the cavity state with �k = �d1 = �frac.2 Using
the expression for the cavity state QFI in (20), we find that
when �frac = 1 + 2n1/s, with s > being a positive integer
and integer n1 �= 0 with 2n1/s > −1, the QFI becomes, at

2The states disentangle regardless of the value of �d1, but setting
these equal simplifies the expression for the QFI significantly. It has
no significant consequence for the overall sensitivity.
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τsep = q sπ , where q is a positive integer:

I (�d1,k=�frac )
c

= k2
0 (�N̂a)2s2

4n2
1(n1 + s)2(2n1 + s)2

{
πqs2ε(2n1 + s) cos(φd1 − φk )

− 8an1[(−1)qs − 1](n1 + s) sin(φk )
}2

. (26)

For a purely oscillating signal with a = 0, and the optimal
choice of phases φd1 − φk = 0 and n1 = −1 (which means
that �frac = 1 − 2/s and s � 3), we find that the optimal
choice for q and s for a given disentangling time τsep = q sπ
is to maximize s which implies q = 1. Then the QFI becomes

I (�d1,k=�frac )
c = π2 k2

0 ε2 s6

4(1 − s)2
(�N̂a)2. (27)

Equation (27) is one of the main results in this paper, since it
provides a sensitivity that can be realistically achieved from
measurements on the cavity state alone.

To see how well the enhancement compares, we contrast
I (�d1,k=�frac ) with (23). Note that n is the parameter giving the
number of mechanical periods. The meaning of s is different;
it is the parameter defining the fractional frequency. Using
(27), and assuming that s is even, such that s = 2n, we find
an improvement of ∼n2/4 for s � 1.

For arbitrary times, we refer to Fig. 3, which shows the
general behavior of the global QFI. The plot in Fig. 3(a) com-
pares resonant gravimetry I (�d1=1) with the enhancements
I (�d1,k=1) and I (�d1,k=�frac ) obtained by including a time-
dependent coupling k(τ ) for purely oscillating gravitational
fields, and the plot in Fig. 3(b) shows the same quantities
for a gravitational field with constant and oscillating parts.
In both plots we consider large temperatures with rT → ∞,
(which minimizes any additional information which can be
gained from the mechanics), and set k0 = (�N̂a)2 = 1, since
these are merely multiplicative factors in the QFI. We also
choose the optimal phases for each setting, which are φd1 = π

for I (�d1=1), φd1 = 0 and φk = π/2 for I (�d1,k=1), and finally
φd1 = φk = π/2 for I (�frac ).

B. Enhanced sensing through modulated mechanical frequency

The second enhancement we consider (separately from
the above) is the inclusion of a mechanical squeezing term
D2(τ )(b̂†2 + b̂2). We assume that it is periodically modulated
with

D2(τ ) = d2 cos(�d2τ + φd2), (28)

where d2 is the amplitude, �d2 is the rescaled modulation
frequency, and φd2 a phase factor.

A term of this form can be generated by, for example,
modulating the spring constant [30] or the trapping frequency
of a levitated system [33,34]. In particular, in the levitated
systems presented in [32–34], modulations of the light–matter
coupling are always accompanied by a modulation of the
mechanical frequency.

When �d2 = 2, this corresponds to a parametric amplifica-
tion of the mechanical oscillation and leads to a squeezed state
of the mechanics (see [63] for how this can be implemented
experimentally). The perturbative solutions of the dynamics
were found in [27], and are valid for d2 � 1 and d2τ of order

FIG. 3. The quantum Fisher information for detecting linear dis-
placements with a modulated optomechanical system. We choose the
example values rT → ∞, k0 = 1, μc = 1, and reiϕ = 1 in both plots
in order to compare the different schemes. (a) The QFI for a purely
oscillating gravitational field with a = 0 and ε = 1. We compare
the global QFI for a resonant gravitational signal I (�d1=1) in (22)
(green solid line) with the enhanced global QFI for a modulation of
the optomechanical coupling at resonance (�d1 = �k = 1) denoted
by I (�d1,k=1) in (C22) (blue dashed line), and the enhanced QFI
for fractional frequencies �d1 = �k = �frac = 1 + 2n1/s denoted by
I (�frac ) in (C23) (dotted purple line), where we set n1 = −1 and s = 8
for this plot. The phases have been chosen such that they optimize
the QFI for each case (see the main text). The QFI for a resonant
coupling shows the strongest increase for later times, but the states
never disentangle, which means that we can only upper bound the
sensitivity for a measurement of the optical field alone. (b) The global
QFI for a constant plus oscillating gravitational field with a = 1 and
ε = 0.1, where we estimate the overall amplitude d1. The fractional
frequencies no longer perform well because ε � a, however the
scaling with the parameter s can only be appreciated when comparing
the curves for different fractional frequencies. Resonant gravimetry,
denoted by I (�d1=1), increases smoothly but it is outperformed by
modulated resonant gravimetry I (�d1,k=1) for large τ .

(at most) one. This means that we can only consider small
values of d2, especially if we are interested in large times τ .

When the mechanical trapping frequency is modulated si-
nusoidally, the light and mechanics never disentangle, and we
are therefore unable to consider the QFI of the optical state
separately [see Sec. III B and Fig. 2(b)]. We therefore resort
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FIG. 4. The plot shows the exact QFI I (�d2=2) for the sensing
of a purely oscillating gravitational field (i.e., a = 0) for different
values for the initial phase parameters of frequency modulation and
gravity oscillation (φd2, φd1). The gravitational field is modulated on
resonance (�d1 = 1) and the mechanical frequency is modulated on
parametric resonance (�d2 = 2). For the plots we used the param-
eter values k0 = 1, ε = 1, d2 = 0.02, μc = 1 and no squeezing of
the cavity field. However, k0, ε, and μc appear only if rT is very
large, as we assumed. Therefore, the only relevant parameter is d2,
which defines the timescale on which the effect of parametric driving
becomes pronounced.

to the global QFI in (15). The modulation of the mechanical
frequency leads to an enhancement of the QFI depending on
the phases φd1 and φd2, however the full expression is long
and cumbersome. We refer to Appendix C 4, and instead find
the optimal phase choice numerically. From the QFI plotted
in Fig. 4, we see that the choice of φd2 = −π/2 and φd1 = 0
maximizes the QFI.

With this choice of phases, taking into account that
d2τ ∼ 1 and d2 � 1, the dominating term in the QFI is

I (�d2=2) ≈ 4k2
0ε

2(ed2τ − 1)
2

d2
2

(�N̂a)2. (29)

Compared with the QFI for resonant gravimetry without any
enhancements in (23), the modulated mechanical frequency
brings an improvement of ∼(e − 1)2 ∼ 3 when d2τ ∼ 1, and
τ = 2π . This means that the addition of a modulated squeez-
ing term can increase the sensitivity, but we are limited by our
perturbative method in predicting its efficiency.

The inclusion of a constant squeezing term D2 ≡ d2 is
equivalent to changing the mechanical frequency as ωm →
ωm

√
1 + 4D2. Since the dimensionful QFI scales with ω−5

m .3

larger d2 means that the QFI decreases.

V. HOMODYNE AND HETERODYNE METROLOGY
OF LINEAR DISPLACEMENTS

While the QFI and the QCRB provide the ultimate limits
to how well a parameter can be estimated, it is not immedi-
ately clear which measurements actually saturate this bound.

3The dimensionful QFI is proportional to k2
0 , which in turn is pro-

portional to ω−3
m . Furthermore, another factor of ω2

m appears from the
dimensionful factor given from the sensitivity in (18), which appears
as a multiplicative factor in front of the QFI.

Experimentally, one would almost always measure the optical
state using a homodyne measurement, a heterodyne measure-
ment, or photon counting.

The cavity field as present in our description is not directly
experimentally accessible, although the contrary is commonly
assumed in the literature. To build on these results, one would
have to consider output fields leaking from the cavity, which
we leave to future work. Instead, here we compute the clas-
sical Fisher information (CFI) for these ideal measurements
on the cavity state, focusing on when the light and mechanics
have disentangled (see Sec. III B).

When the light mode and mechanical oscillator are in a sep-
arable state, the local QFI generator reduces to Ĥd1 = BN̂a,
where B is defined in (14). The optimal bound is given by the
QFI in (20), and our aim is to investigate whether a homodyne
or heterodyne measurement satisfies this.

The general expression for the CFI is

I =
∫

dx
1

p(x, d1)

(
∂ p(x, d1)

∂d1

)2

, (30)

where we henceforth denote all CFI quantities by I , rather
than I, which we reserve for the QFI, and where p(x, d1) =
Tr[ρ̂d1 �̂x] is a probability distribution resulting from a mea-
surement with a POVM element �̂x. Assuming that the initial
cavity-field state is pure (which in the settings we con-
sider here is always true when the optics and mechanics are
separable), we define the state |ψτ 〉 = Ûc |ψ0〉, where Ûc =
e−iFN̂a N̂a e−i FN̂2

a
N̂2

a acts on the cavity state. Then, noting that the
probability is given by p(x) = |〈ψτ |x〉|2 and 1 = ∫

dx |x〉〈x|,
the CFI can be written

I = 2 B2
〈
N̂2

a

〉 − (R + R∗), (31)

where

R = B2
∫

dx

( 〈x|N̂a|ψτ 〉
〈x|ψτ 〉

)2

p(x). (32)

The first term in (31) is relatively straightforward to calcu-
late, however, it is generally difficult to perform the integral
in (32). A particular simplification exists when 〈x|N̂a|ψτ 〉 is
proportional to 〈x|ψτ 〉. This occurs, for example, when the
state at τ = τsep is a coherent state, which can be guaranteed
by choosing parameters such that the coefficient FN̂2

a
is a

multiple of 2π at the disentangling time (see Appendix E
for details). For mathematical convenience we will make this
assumption in the remainder of this section, however it turns
out that this special case is still sufficient to saturate the QFI
for practical measurement schemes, unless the initial cavity
state is squeezed (in which case the CFI still approaches the
QFI for large photon number).

A. Homodyne measurements

We start by investigating homodyne measurements for co-
herent and squeezed coherent optical states, since these are
standard measurements that are routinely performed in the
laboratory.

In [25] it was shown that the QFI is saturated at τ = 2π by
a homodyne measurement when the rescaled optomechanical
coupling takes an integer value and when the gravitational ac-
celeration is constant. The question is whether the homodyne
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measurement is still optimal when the gravitational field is
time dependent, and when a modulation of the optomechani-
cal coupling is included.

In general, a homodyne measurement involves a measure-
ment of the optical quadrature. The relevant POVM is given
by |xλ〉〈xλ| where the state, |x〉 = |xλ〉 is defined as the eigen-
state of the operator

x̂λ = âe−iλ + â†eiλ

√
2

. (33)

For an initial coherent state in the cavity, we show in
Appendix E that the CFI is given by

I (hom)
μc

= 4 B2Im(μ̃ce−iλ)2, (34)

where B was defined in (14) (and thus contains the effects of
modulating the coupling), and where μ̃c = e−iFN̂a μc.

For matching choices of λ and μc, the optimal value can
always be found. When Re[μ̃ce−iλ] = 0, we find

I (hom)
μc

= 4 B2|μc|2, (35)

which coincides with the local QFI (20) for the cavity state.
Therefore, we conclude that the CFI for homodyne measure-
ments saturates the QCRB, provided that the phase λ can be
optimally controlled.

A similar analysis can be performed when the initial op-
tical state is squeezed. Adopting the convention |μc, ζ 〉 =
Ŝ(ζ ) |μc〉, where the squeezing parameter is given by ζ =
reiϕ , we show in Appendix E that the maximum CFI
[for a large photon number |μc|2, such that it dominates over
the vacuum contribution, and given the specific conditions in
(E20)], is given by

I (hom)
ζ = 4 B2|μc|2e4r . (36)

This is less than the maximum QFI [see the expression in (17)]
by only a vacuum contribution. However, the CFI asymptoti-
cally approaches the QFI for large |μc|2. In general, however,
the Fisher information can still be nonzero when μc = 0. Here
we find the vacuum contribution

I (hom)
ζ ,μc=0 = B2 2 sinh2(2r) sin2(ϕ̃ − 2λ)

[cosh(2r) − sinh(2r) cos(ϕ̃ − 2λ)]2
, (37)

where ϕ̃ = ϕ − 2FN̂a
, and the F coefficients are all evaluated

at the time of separability. Similar to the QFI, the CFI reaches
a maximum of I (hom)

ζ = 2B2 sinh2(2r) for ϕ̃ − 2λ = ±2[nπ ±
tan−1(e−2r )]. However, for all but very small photon number
(and large r) the optimal CFI is given by (36).

B. Heterodyne measurements

The heterodyne measurement case is somewhat more
straightforward since the probabilities are calculated with re-
spect to coherent states [64]. Replacing |x〉 = |β〉, where |β〉 is
a coherent state, we find for |ψ0〉 = |μc〉 the overlap appearing
in R to be

〈β|â†â|μc〉 = β∗μc〈β|μc〉, (38)

and so

R = B2μ2
c〈â†2〉ψτsep

= B2|μc|4. (39)

The CFI for a heterodyne measurement is then4

I (het) = 2 B2|μc|2, (40)

which is half of the QFI (20) associated with the light field.
For initially squeezed states, we have (see Appendix E 2)

I (het)
ζ = 2 B2[|μc|2e3rsech(r) + 2 sinh2(r)

− 2Re[e− iϕ̃
2 μ̃c]2 sinh(3r)sech(r)

]
. (41)

Similarly to the QFI, we find that when e− iϕ
2 μc is purely imag-

inary, the CFI is maximized. However, it does not coincide
with the QFI.

VI. IDEAL SENSITIVITIES FOR
OPTOMECHANICAL SYSTEMS

In this section we use our results to obtain an order-
of-magnitude estimate for the ideal sensitivity of gravity
measurements. The sensitivities we derive below are merely
indicative of the final sensitivities that can be achieved. We
then briefly discuss squeezing of the cavity field and proceed
to compute the fundamental sensitivity for three applica-
tions: generic accelerometry, sensing gravitational signals
from small source masses, and detecting gravitational waves.

We identify two key formulas from our results that provide
the strongest sensitivities for the detection of time-dependent
gravitational fields. Crucially we limit ourselves to present-
ing sensitivities that we know can be achieved by homodyne
measurements in the laboratory. This requirement rules out
the enhancement that can be achieved when the optomechan-
ical coupling is modulated at resonance and modulations of
the mechanical frequency, simply because the system never
evolves into a separable state. With our current tools it is diffi-
cult to predict the sensitivity of a classical measurement on a
mixed state, however this does not mean that high sensitivities
cannot be achieved. We leave it to future work to explicitly
explore those settings.

For measurements of the cavity state at multiples of
τ = 2πn, the QFI for gravimetry of resonant gravitational
fields in (22) leads to the sensitivity

�g0 � 1√
M

1

4πn k0 (2a + ε)

1

�N̂a

√
2 h̄ ω3

m

m
, (42)

where we recall that m is the optomechanical mass, ωm is
the mechanical oscillation frequency, k0 is the optomechanical
coupling, a is a constant contribution from the field, and ε is
the oscillation amplitude.

We then allow the mechanical frequency of the optome-
chanical system and the optomechanical coupling to be
modulated at the fractional frequencies �frac, which we iden-
tified in Sec. III B. We use the QFI expression in (27) to
predict the following sensitivity for a measurement at τ = πs
(s � 3 being a positive integer), at which point the light and
mechanical element are found to be in a separable state:

�g0 � 1√
M

2(s − 1)

πk0s3

1

�N̂a

√
2 h̄ ω3

m

m
, (43)

4This corrects an erroneous factor of
√

π/2 in [26].
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TABLE I. Single-shot (M = 1) sensitivity limits for measure-
ments of oscillating gravitational accelerations with optomechanical
systems predicted by Eq. (43) with �frac = 1 − 2/s = 9/10, where
s = 20. For the chosen parameters, resonant gravimetry without
modulation represented by Eq. (42) leads to a bound that is larger
by about a factor 5 in comparison to the bound given by Eq. (43).

Fundamental sensitivity for osc. gravitational fields

Parameter Symbol Value

Time of measurement τ 20π

Mechanical frequency ωm 2π×102 rad s−1

Coherent state parameter μc 250
Squeezing value r 1.73
Photon number 〈N̂a〉 106

Optomechanical coupling k0 0.1
Oscillator mass m 10−15 kg
Sensitivity (42) �g0 7.2×10−11 m s−2

Sensitivity (43) �g0 1.4×10−11 m s−2

where we have set ε = 1 and where we explicitly set a = 0.
For bright squeezed states of the cavity field, �N̂a is

maximized when μceiϕ/2 is fully imaginary, which can be
achieved by assuming that μc ∈ R and that ϕ = π/2. With
this condition we find that 〈N̂a〉μc,ζ

= μ2
c cosh(2r) + sinh2(r)

and (�N̂a)2
μc,ζ

= e4rμ2
c + sinh2(2r)/2. As mentioned earlier,

it is common to report the squeezing in terms of decibel in
experiments, which we call SdB. The relation between this
quantity and r reads r = SdB/(20 log10 e) [65]. Schemes for
obtaining SdB = 10 have been proposed [66], which corre-
sponds to r = 1.73. While the CFI for homodyne detection
with squeezed states does not saturate the QCRB, it does so
asymptotically as |μc| � 1 and small r.

A. Measuring oscillating gravitational fields

As the simplest application, we consider measurements of
the oscillating part of a gravitational field. The constant part of
the field (if present) can be absorbed into the system dynamics
by letting the constant displacement of the mechanics be part
of the initial state. This is equivalent to saying that we are
performing a relative measurement of the gravitational field,
where only the time-dependent part contributes. Using the
parameter values listed in Table I and considering a modu-
lated optomechanical coupling, we find that the single-shot
sensitivity predicted by Eq. (43) for measuring oscillating
gravitational acceleration is �g0 ∼ 1.4×10−11 m s−2.5

According to the equivalence principle, the sensitivity we
derive here also applies to accelerometry measurements, when
the optomechanical system is shaken with fixed frequency. As
such, our results are valid for any type of force measurement.

5This sensitivity is less than that reported for constant gravime-
try in [25], though not [26] (�g0 ∼ 10−15 m s−2) because we have
considered the oscillating part of the gravitational field, which is
generally smaller in magnitude compared with the constant part. We
also considered a different set of parameters compared with [25].

B. Measuring gravitational fields from small oscillating masses

The interest in detecting gravitational fields from increas-
ingly small masses stems from the desire to explore the
low-energy limit of quantum gravity. If the gravitational field
from superposed masses can be detected, it may, for example,
be possible to examine how gravity behaves on these small
scales [3,4,11,67]. An explicit setup for measurements of a
milligram mass was proposed in [68].

We compute the fundamental bound for sensing gravita-
tional fields from small source masses, which then allows
us to place a limit on the masses that these systems can
detect (for realistic source-detector separations). We refer to
the expression for the gravitational potential in (A2) in Ap-
pendix A, where we have expanded the gravitational potential
that results from small, time-dependent perturbations from
a moving spherical source mass. The resulting gravitational
field oscillates around a constant value where g0 � εg0. If
the constant contribution can be measured, the most practical
strategy would be to forgo any modulations of the coupling
and consider the sensitivity given by (42). However, more
realistically, it may lead to higher precision to estimate only
the oscillating part (see for example [68]). In this case, the
light–matter coupling can be modulated for an enhancement,
and we use the expression in (43).

Given the values in Table I and a number of measurements
M = 104, we find that the maximum sensitivity for measur-
ing the oscillating part of the gravitational field of a moving
mass that can be achieved is �g0 = 1.4×10−13 m s−2. For a
spherical source mass oscillating with amplitude δr0 at an av-
erage distance r0 from the source such that the time-dependent
distance is r(τ ) = r0 − δr0 cos(�d1τ ), we find that (see
Appendix A) the oscillating contribution to the acceleration
is ≈2δr0GmS/r3

0 , where G is Newton’s gravitational constant.
We can solve for mS, and assuming that 2δr0/r0 = 0.1, we
find mS ∼ 200 ng given a distance of 100 μm between the
probe and source mass. At this distance we expect the Casimir
effect between the probe and source sphere to become no-
ticeable, but this can potentially be remedied by shielding the
system. We discuss this in Sec. VII D below.

C. Gravitational wave detection

Recent years have seen a surge in interest regarding the
measurement of gravitational waves with novel setups, in-
cluding proposals for detectors with superfluid helium [69],
Bose-Einstein condensates [70], and even interferometry with
mesoscopic objects [71]. Here we investigate the feasibility of
gravitational wave detection with an ideal cavity optomechan-
ical system. Our approach is essentially the quantum analog of
the classical scheme presented in [72].

Compared with the previous section, here we focus on
identifying the experimental parameter regimes needed to
detect gravitational waves. The gravity gradient induced by
a gravitational wave is given as G = ω2

mh/2, and this is by
far the dominant effect induced by a gravitational wave for
optical resonator systems (see [36,73,74] for details of how
deformable optical resonators can be described in a relativistic
framework and how relativistic and Newtonian effects can
be compared). Then the differential acceleration between the
two ends of the cavity system becomes g0 = Lω2

mh/2, and the
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TABLE II. Sensitivity limit for measurements of gravitational
wave strain with a single quantum-optomechanical system of 10 m
length predicted by Eq. (43) with �frac = 1 + 2n1/s = 9/10. Simi-
lar numbers can be obtained considering a three-dimensional array
of 104 detectors with cavity length 10 cm and ten independent
measurements with each detector to obtain for the total number of
independent measurements M = 105.

Fundamental sensitivity bound for GW detection

Parameter Symbol Value

Time of measurement τ 20π

Number of measurements M 10
Mechanical frequency ωm 10 rad s−1

Squeezing value r 2
Coherent state parameter μc 600
Photon number 〈N̂a〉 107

Cavity length L 10 m
Optomechanical coupling k0 1
Oscillator mass m 10−10 kg
Sensitivity (44) �h 1.3×10−21

error bound for gravitational wave strain h is given as

�h � 2

L ω2
m

�g0. (44)

Considering a single detector of 10 m length with the parame-
ters given in Table II, we obtain �h ∼ 1×10−21. Strains of the
order of 10−21 are expected for compact binary inspirals in the
frequency range we considered here (see Fig. A1 of [75]). The
timescale for a single measurement is τ/ωm ∼ 6 s, which is
sufficiently short for several integrated measurements before
the source leaves the considered frequency range ∼2 Hz (see
Fig. 1 of [76]). The same sensitivity can be achieved by 104

sensors of length L = 10 cm (provided that Table II can be
maintained).

VII. DISCUSSION

There are many practical aspects to building an optome-
chanical gravimeter, many of which are beyond the scope of
this work. Features such as optical and mechanical noise are
ever present in experiments, and we briefly discuss these and
other systematics in this section.

A. System parameters

In Tables I and II we used example parameters to compute
the ideal sensitivities from our results. We here discuss the
feasibility of these parameters, and we identify a few features
of different experimental platforms that appear beneficial for
displacement sensing. Our aim is to provide a brief discussion
of this topic rather than a comprehensive overview of the
advantages and disadvantages for each experimental platform.

From our results we see that a low mechanical frequency
is beneficial for sensing. Considering the fact that k0 ∝ ω

−3/2
m ,

we see from (42) and (43) that �g0 ∝ ω3
m. At the time of writ-

ing there are not yet many optomechanical experiments that
have achieved ground-state cooling, and thereby operate in the
quantum regime. Those that do (see, e.g., [24,47–49]) require

high mechanical frequencies, which is therefore detrimental
to sensing as envisioned here.

We do however identify a few platforms that lend them-
selves well for sensing of the kind explored in this work,
although additional experimental progress is needed before
these systems can operate in the nonlinear quantum regime.
Crucially, levitated systems can achieve extraordinarily low
mechanical frequencies; for example, particles levitated in a
magnetic trap [77,78] can potentially reach mechanical fre-
quencies as low as ∼2π×50 rad s−1 [79]. This type of system
has in fact already been considered in the context of measuring
constant gravitational acceleration [80]. A cavity could poten-
tially be added to the magnetically levitated systems described
in [78], which would allow the mechanical element to couple
to the cavity field via a standard light–matter coupling of the
form considered here. We note however that a lower frequency
also requires the system to stay coherent for longer, which is
of course challenging. Similarly low frequencies have been
achieved with optically trapped nanoparticles [81].

Fabry-Pérot moving-end mirrors and membrane-in-the-
middle configurations generally operate at higher mechanical
frequencies (see, e.g., [82]). However, we note that many of
the features of optomechanical systems are interlinked, such
as the mechanical frequency and the coupling constant. The
sensitivities derived will therefore, in principle, be different
for each unique setup.

B. Restriction of the cavity-field parameters

Our results remain valid as long as the dynamics of the
system is well approximated by the Hamiltonian (3). The
standard optomechanical Hamiltonian is derived by assuming
that the perturbation of the oscillator is small compared with
a specific length scale of the system [37,83,84]. For a Fabry-
Pérot cavity, the perturbation must be much smaller than the
cavity length L [37,84], and for a levitated system, it must
be smaller than or equal to the wavelength of the cavity light
mode. This ensures that the radiation pressure force remains
approximately constant [16].

If the mechanical oscillator is strongly displaced such that
additional anharmonicities appear6 in the Hamiltonian, our
results can no longer be used to accurately predict the ideal
sensitivity (that is however not to say that the system would
perform badly as a sensor). We note that the system we
consider is closed, and that the initial state corresponds to
immediate radiation pressure on the mechanical oscillator.
This effect is by far the largest contributing factor to the dis-
placement (especially in the context considered in this work,
where the gravitational effects are generally weak). To ensure
that the oscillator is not displaced beyond the point at which
the dynamics changes, we must consider restrictions to the
parameters that determine the cavity field.

We introduce a generic length-scale l beyond which the
extended Hamiltonian (3) is no longer valid. The nature of
l will differ for each setup. Because the system is quan-
tum mechanical, we consider the probability of detecting the
center-of-mass of the mechanical element a certain distance

6Certain dynamics can still be solved, see, e.g., [85].
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away from the origin. This is well captured by the expectation
value 〈x̂m〉 and the standard deviation �x̂m, and we therefore
require that they remain much smaller than the length-scale l
at all times.

We derive explicit expressions for 〈x̂m〉 and �x̂m in
Appendix F. The position of the mechanical oscillator is given
by x̂m = x0(b̂† + b̂), where we chose the equilibrium position
as the origin. When prepared in the ground state, the general
expression for the mean displacement and its variance as a
function of time τ are given by

〈x̂m(τ )〉 = 2 x0 Re[�(τ ) + �(τ ) 〈N̂a〉], (45)

(�x̂m )2 = x2
0[1 + 2 Re[α(τ )β(τ )] + 2 |β(τ )|2

+ 4{Re[�(τ )]}2(�N̂a)2], (46)

where α(τ ) and β(τ ) are Bogoliubov coefficients that arise
from the mechanical subsystem evolution, given in (B6), and
where �(τ ) and �(τ ) are given by (F2) in Appendix F. With
these expressions we can identify the appropriate restrictions
on 〈N̂a〉 and �N̂a for resonant gravimetry and the enhance-
ment schemes presented Sec. IV.

We here comment on the restriction for each scheme con-
sidered in Sec. IV:

(i) For gravimetry without enhancements, we find that
〈x̂m(τ )〉 oscillates with an amplitude 2x0(k0 〈N̂a〉 + d1a) about
a mean displacement of the same size. The restriction on the
photon number is given as 〈N̂a〉 � l/(2x0k0). Analogously,
the photon number standard deviation is restricted to �N̂a �
l/(2x0k0).

(ii) If the light–matter coupling is modulated as a func-
tion of time k(τ ) = k0 cos(�kτ ), at resonance �k = �d1 = 1,
the dominant term in 〈x̂m〉 is given by x0k0 〈N̂a〉 τ . Thus the
condition on the photon number becomes 〈N̂a〉 � l/(x0k0τ ).
Analogously, the standard deviation is limited by �N̂a �
l/(x0k0τ ). This means that we are additionally limited by the
integration time. The main difference to (i) is that both 〈x̂m〉
and �x̂m increase with time, which implies that the bound
strengthens with τ .

(iii) Next, for �d1 = �k = �frac, and taking into ac-
count that τsep = sπ , we find the condition 〈N̂a〉 ,�N̂a �
π l/(x0k0τsep), which is larger by a factor π compared with
the resonant case.

(vi) For modulations of the mechanical frequency
with a constant coupling k = k0, we find the restriction
〈N̂a〉 ,�N̂a � l/[2x0k0(1 + ed2τ )], which holds for d2τ � 1.

We note that the effect of the cavity field on 〈x̂m〉 can
be canceled either by preparing the mechanical state in an
appropriate coherent state, or by introducing an additional ex-
ternal potential that cancels the effect of the radiation pressure.
When the light–matter coupling k(τ ) is modulated (which
enhances the sensitivity to displacements), the now time-
dependent photon pressure will induce additional significant
oscillations. In contrast to a constant coupling, this effect
cannot be canceled by preparing the mechanics in an appropri-
ate initial state. However, by adding a time-dependent linear
potential term of the form Ĥext = h̄ω0k(τ ) 〈N̂a〉 (b̂† + b̂), all
contributions of 〈N̂a〉 to 〈x̂m〉 cancel. While adding Ĥext does
not modify the QFI for the measurement of displacement,
the potential must be known to the same precision as the

gravitational field that is being measured. We conclude that,
given the Hamiltonian (3), the strongest bound is given by the
standard deviation �x̂m.

C. Scaling of the sensitivity given the cavity field restrictions

From the expressions in (42) and (43), we see that increas-
ing the photon number standard deviation �N̂a decreases the
spread �g0. However, since �N̂a must obey the restrictions
we derive above, and since these restrictions scale with time,
we can consider the fundamental scaling of the QFI when
the photon number restriction is taken into account. We focus
specifically on the scaling with n, which is a positive integer
given by τ = 2πn.

Starting with resonant gravimetry, we identified the
requirement that �N̂a � l/(2x0k0). Since �N̂a does not in-
crease with time, the overall scaling of the sensitivity goes as
�g0 ∝ n−1, where n = τ/(2π ), as per (42).

For a modulated optomechanical coupling, we identified
the following restriction: �N̂a � l/(x0k0τsep). Since �g0 ∝
s−2�N̂−1

a , as per (43), where s � 1, we see that the over-
all scaling of the sensitivity with respect to s is given by
�g0 ∝ s−1.

These considerations show that a scaling of the sensitivity
∝ τ 2 can be achieved using the modulated coupling, however
if the restrictions to the cavity field parameters are taken
into account, the scaling is ∝ τ . It remains to be determined
whether these restrictions can be circumvented and how they
scale with τ when decoherence is taken into account.

As an additional remark on this topic, we also note that
the phonon number displays a similar behavior to the vari-
ances. We plot the phonon number against time in Fig. 6 in
Appendix G. For resonant gravitational fields and a resonant
optomechanical coupling, we find that the phonon number in-
creases monotonically with time. However, for the fractional
frequencies, we instead find that the phonon number returns to
zero at the decoupling times. This indicates that the sensitivity
still increases in time while the energy stored in the system
does not increase indefinitely.

D. Limitations due to the Casimir effect

When two objects are placed in close proximity, they will
almost always experience a force due to the Casimir effect
[86]. While there is an ongoing effort to derive simple ex-
pressions for alternative configurations [87], here we use an
analytic formula for the acceleration due to the Casimir ef-
fect between two homogeneous perfectly conducting spheres,
which is given by the spatial derivative of Eq. (21) of [88]
divided by the mass:

aC = 161h̄ cR6

4π m r8
, (47)

where c is the speed of light, m is the mass of the sphere, R
is the radius, and r is the distance between the source and the
probe. In our case, the two systems are unlikely to be made
of a perfectly conducting material, and they might also not be
entirely spherical, but we use (47) to estimate the order-of-
magnitude of the resulting Casimir-Polder effect.
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In Sec. VI A we estimated the fundamental sensitivity of an
optomechanical system to the gravitational field produced by
a small oscillating sphere. Assuming that both the source mass
and the optomechanical probe system are made of tungsten,
and that they both weigh ∼200 ng, we find an acceleration of
the order of ∼1×10−12 m s−2 due to the Casimir effect at a
distance of 100 μm. The constant gravitational acceleration
from the same system is also of order ∼1×10−12 m s−2.
This shows that the Casimir effect can become an important
systematic factor for gravimetry in the regime that we are
considering.

The numbers shown here can be reduced significantly
by considering larger distances, or by using a material in-
between the source mass and the sensor that acts as a shield
to the Casimir effect [89,90]. The addition of the shield
induces a stationary Casimir force and the only remaining
time-dependent force on the sensor will be the oscillating
gravitational field. Here, measuring oscillating gravitational
fields instead of static ones has a clear advantage. The only
limitation is the size of the shield itself. Additional reductions
of the Casimir force can be achieved by adding nanostructures
to a metallic surface [91], compensating or modulating the
Casimir force with radiation pressure [92], or optical modula-
tion of the charge density [93]. Theoretical investigations also
indicate that its sign can be inverted with a shield made out of
a left-handed metamaterial [94].

A specific version of the shielding scheme arises in levi-
tated optomechanics when the oscillating source mass can be
placed behind the end mirror of the cavity. Then, the mirror
itself serves as a shield for Casimir forces [68].

E. Sensitivity from coupling to an external light field

In an optomechanical experiment, the mechanical element
is typically probed by measuring the photons that leak from
the cavity. While we do not model this setting in this work,
we argue in the following that the sensitivity will decrease and
that the bound we derive is still fundamental. A measurement
of the cavity field is typically modeled as the field being
coupled to at least one propagating mode outside the cavity
(alternatives of measuring cavity fields by probing them with
atoms sent through the cavity have been proposed, but they
are thus far limited to the microwave regime [95]). While
coupling to other systems at the time of measurement is taken
into account in the QCRB due to optimization over all POVM
measurements, a typical coupling between inside and outside
modes via a semitransparent mirror will already be active in
the parameter-coding phase. It is well known that coupling to
an ancilla system during parameter coding can enhance the
sensitivity, even if nothing is done with the ancilla system
(see, e.g., [96]). However, this requires an initial entangled
state and is not possible with purely unitary evolution [97],
and hence not relevant in the framework of the present work.
On the other hand, a semitransparent mirror used for coupling
the cavity mode to an outside propagating mode can lead to
additional photon-shot noise compared to a direct measure-
ment of an undamped cavity mode. For example, in the case
that the cavity state is still a coherent state after parameter
encoding, the outcoupled state will also be a coherent state,
but with an amplitude reduced by a factor corresponding

to the transparency of the beamsplitter. In cases where the
QFI has a term proportional to the photon number variance
[see, e.g., the expression in (C8)], this contribution is ac-
cordingly reduced proportional to the transparency of the
beamsplitter. In conclusion, the sensitivity achieved from
measuring the output light can be substantially reduced com-
pared to the ultimate bounds derived here based on direct
measurements of the cavity mode, by a factor depending on
the outcoupling.

VIII. CONCLUSIONS

In this work we computed the fundamental sensitivity for
time-dependent gravimetry with a nonlinear optomechanical
system. We considered both coherent and bright squeezed
states of light, and we found that it is possible to signifi-
cantly enhance the sensitivity of the system by modulating
the optomechanical coupling. To ensure that these sensitivi-
ties are not influenced by the initial state of the mechanical
element and can be achieved through measurements of the
cavity state, we identified the points at which the mechanical
oscillator and optical mode evolve into a separable state. In
addition, we proved that for coherent states the QCRB is
saturated for homodyne measurements when the optical mode
and mechanical oscillator are found in a separable state. For
squeezed coherent states, we found that this is also true when
the vacuum contribution is negligible.

Our results serve as a proof-of-principle that an optome-
chanical system could potentially be used to measure the
gravitational field from oscillating source masses as small as
200 ng at a distance of 100 μm. We also provide bounds
for quantum optomechanical systems in the nonlinear regime
when used as gravitational wave detectors. To successfully
detect passing gravitational waves, we have assumed parame-
ters that are experimentally challenging to implement, but not
beyond the reach of technological advancement.

Our work considers the fundamental sensitivity that can
be achieved. The next step is to includes schemes by which
the intracavity field may be accessed, as well as the effects
of dissipation. A proposed scheme for coherently opening a
cavity was proposed by Tuffarelli et al. [98]. The input-output
formalism has not yet been fully extended to the nonlinear
regime, however some proposals provide some initial steps
in this direction [99–102]. Finally, it should be noted that
our methods can be extended to additional experimental plat-
forms, as long as the Hamiltonian is of the general form (3).
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APPENDIX A: DERIVATION OF THE GRAVITATIONAL
DRIVING DUE TO A SPHERICAL SOURCE MASS

In this Appendix we derive the mechanical displacement
term in the Hamiltonian (3) that originates from an oscillating
source mass. In particular, we show that one must consider
both a constant and an oscillating part when the source of
the gravitational field is an oscillating mass. The same does
not hold for gravitational waves, which manifest as purely
oscillating gravitational fields.

We start by assuming that the optomechanical system
(which we approximate as a point mass) is situated a distance
r(τ ) away from the oscillating source mass. We then assume
that the source mass oscillates around an equilibrium position
r0, such that r(τ ) = r0 + δr0(τ ), where δr0(τ ) is given by

δr0(τ ) = −δr0 cos(�d1τ ), (A1)

where δr0 is a small displacement, and �d1 is the oscillation
frequency of the signal rescaled by ωm.

We then assume that the full separation r(τ ) is perturbed by
a small deviations x in addition to the optomechanical probe
system’s position. The displacement then reads r(τ ) = r0 +
δr0(τ ) − x, where x is small compared with r0, such that x �
r0. The gravitational potential can then be Taylor expanded
around r0 to give

−Gm1m2

r(τ )
= −Gm1m2

r0

(
1 − δr0(τ )

r0
+ δr0(τ )2

r2
0

)

− Gm1m2

r2
0

(
1 − 2δr0(τ )

r0

)
x, (A2)

where we assumed that x/r0 is much smaller than the am-
plitude of δr0(t )/r0. If we then ignore the first term, which
merely adds a time-dependent shift to the energy, we obtain
a linear shift in x proportional to −[1 + ε cos(�d1 τ )], where
ε = 2δr0/r0. By then promoting the small perturbed position

x to an operator x → x̂m =
√

h̄
2ωmm (b̂† + b̂), we obtain the

displacement term multiplied by the time-dependent function
D1(τ ) that we use in the Hamiltonian (3).

APPENDIX B: SOLVING THE TIME EVOLUTION
OF THE DYNAMICS

In this Appendix we outline the solution to the dynamics
shown in Sec. II. The explicit derivation of these solutions can
be found in the appendices of Refs. [27,28]. Starting from the
Hamiltonian in Eq. (3) in the main text, which is given by

Ĥ = h̄ ωc â†â + h̄ ωm b̂†b̂ − h̄ ωm k(τ ) â†â(b̂† + b̂)

− h̄ ωm D1(τ )(b̂† + b̂) + h̄ ωm D2(τ )(b̂† + b̂)2, (B1)

the formal solution to the time-evolution operator is Û (τ ) =←−T exp[−i
∫ τ

0 dτ ′ Ĥ (τ ′)], where we recall that τ = ωmt is a di-
mensionless time parameter. In order to write this expression
in a more manageable form, we use methods based on finding
a Lie algebra that generates the dynamics to write Û (τ ) as
[27,28,41]

Û (τ ) = e−i JbN̂b e−i J+ B̂(2)
+ e−i J− B̂(2)

− e−i FN̂a N̂a e−i FN̂2
a

N̂2
a

× e−i FN̂a B̂+ N̂aB̂+ e−i FB̂+ B̂+e−i FN̂a B̂− N̂aB̂− e−i FB̂− B̂− , (B2)

where we have moved into a frame that rotates with the light,
and where the operators are defined as

N̂a = â†â, N̂2
a = (â†â)2, N̂b = b̂†b̂,

B̂+ = b̂† + b̂, B̂− = i (b̂† − b̂),

B̂(2)
+ = b̂†2 + b̂2, B̂(2)

− = i (b̂†2 − b̂2),

N̂a B̂+ = N̂a (b̂† + b̂), N̂a B̂− = N̂a i (b̂† − b̂). (B3)

Furthermore, the dynamical F coefficients in (B2) are given
by

FN̂a
= − 2

∫ τ

0
dτ ′ D1(τ ′) Imξ (τ ′)

∫ τ ′

0
dτ ′′ k(τ ′′) Reξ (τ ′′)

− 2
∫ τ

0
dτ ′ k(τ ′) Imξ (τ ′)

∫ τ ′

0
dτ ′′ D1(τ ′′)Reξ (τ ′′),

FN̂2
a

= 2
∫ τ

0
dτ ′ k(τ ′) Imξ (t ′)

∫ τ ′

0
dτ ′′ k(τ ′′) Reξ (τ ′′),

FB̂+ =
∫ τ

0
dτ ′ D1(τ ′) Reξ (τ ′),

FB̂− = −
∫ τ

0
dτ ′ D1(τ ′) Imξ (τ ′),

FN̂a B̂+ = −
∫ τ

0
dτ ′ k(τ ′) Reξ (τ ′),

FN̂a B̂− =
∫ τ

0
dτ ′ k(τ ′) Imξ (τ ′), (B4)

where the complex function ξ is given by

ξ := α + β∗, (B5)

and where α and β are Bogoliubov coefficients given by

α(τ ) = 1

2

[
P11 − iIP22 + i

d

dτ

(
P11 − iIP22

)]
,

β(τ ) = 1

2

[
P11 + iIP22 + i

d

dτ

(
P11 + iIP22

)]
. (B6)

Here P11 and IP22 are solutions to the following differential
equations:

P̈11 + [1 + 4D2(τ )] P11 = 0,

ÏP22 + [1 + 4D2(τ )] IP22 = 0, (B7)

with the initial conditions P11(0) = 1 and Ṗ11(0) = 0 and
IP22 (0) = 0 and İP22 (0) = 1. Furthermore, the J coefficients in
(B2), which arise from the inclusion of a modulated mechan-
ical frequency, are given by

J+ = arcosh(|α2 − β2|)
4

,

J− = 1

4
arcosh

(
(2|α|2 − 1)

|α2 − β2|
)

, (B8)

Jb = − 1

2
Arg

(
α2 − β2

|α2 − β2|
)

.

The full derivation of these quantities and additional examples
of their use can be found in [27]. We now present solutions to
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the F and J coefficients for different choices of k(τ ), D1(τ ),
and D2(τ ). We focus on displaying FN̂a B̂± and FB̂± , since these
make up the QFI in (15) and are used elsewhere both in the
main text and in other Appendixes. While the QFI also de-
pends on FN̂a

, this is often an extremely long and cumbersome
expression, and we do not print it here.

We note that the ordering chosen in (B2) is not unique.
A different choice of ordering of the exponential operators
would give rise, in general, to different functions (B4). Note

that, in order to claim that a particular solution (B2) is a global
solution, that is, it is valid for all times τ , we need to make sure
that the differential equations H = M(F, τ )Ḟ obtained for the
functions F , where F is the vector collecting the functions, H
is the vector of Hamiltonian parameters, and M is a matrix that
depends on F, has global solutions. In other words, we require
that det(M ) �= 0. When det(M ) = 0 the particular choice of
ordering is not a valid solution beyond the time for which
det(M ) = 0 [103].

1. Dynamics for a constant coupling and a resonant gravitational field

For a constant optomechanical coupling k(τ ) = k0, mechanical driving at resonance, i.e., D1(τ ) = −d1[a + ε cos(τ + φd1)]
and no mechanical modulation (which implies vanishing D2), we find ξ = e−iτ . We find

FB̂+ = − 1
2 d1 {τε cos(φd1) + [2 a + ε cos(τ + φd1)] sin(τ )},

FB̂− = 1
4 d1{4a[cos(τ ) − 1] + ε[2τ sin(φd1) + cos(2 τ + φd1) − cos(φd1)]}, (B9)

FN̂aB̂+ = − k0 sin(τ ), FN̂aB̂− = k0[cos(τ ) − 1],

and the J coefficients in (B8) are Jb = τ , J± = 0.

2. Dynamics for a modulated coupling and time-dependent gravitational field

For the case of a modulated optomechanical coupling k(τ ) = k0 cos(�kτ + φk ) and a time-dependent gravitational field
D1(τ ) = −d1[a + ε cos(�d1τ + φd1)], and no modulation of the mechanical frequency, such that D2(τ ) = 0, we obtain

FB̂+ = −d1a sin(τ ) − d1ε
(�d1 + 1) sin[(�d1 − 1)τ + φd1] + (�d1 − 1) sin[(�d1 + 1)τ + φd1] − 2�d1 sin(φd1)

2
(
�2

d1 − 1
) ,

FB̂− = d1a[cos(τ ) − 1] − d1ε
(�d1 + 1) cos[(�d1 − 1)τ + φd1] − (�d1 − 1) cos[(�d1 + 1)τ + φd1] − 2 cos(φd1)

2
(
�2

d1 − 1
) ,

FN̂aB̂+ = −k0
(�k + 1) sin[(�k − 1)τ + φk] + (�k − 1) sin[(�k + 1)τ + φk] − 2�k sin(φk )

2
(
�2

k − 1
) ,

FN̂aB̂− = k0
cos(φk ) − cos(τ ) cos(�kτ + φk ) − �k sin(τ ) sin(�kτ + φk )

�2
k − 1

, (B10)

and the J coefficients in (B8) are again given by Jb = τ , J± = 0.

3. Dynamics for a time-dependent gravitational field
and modulated mechanical frequency

For a constant optomechanical coupling k(τ ) = k0, a time-
dependent gravitational field D1(τ ) = −d1[a + ε cos(�d1τ +
φd1)] and a mechanical frequency that is modulated with
D2(τ ) = d2 cos(2τ + φd2), we must first find the approximate
resonant solutions of the differential equation (B7). For de-
tails on how these solutions can be found see Appendix E
in Ref. [27]. In short, driving the system at �d2 = 2 causes
the differential equations (B7) to take the form of Mathieu’s
equation [104]. It has the following form:

d2y

dτ 2
+ [1 + 4d2 cos(2τ + φd2)]y = 0, (B11)

where the solutions y(τ ) correspond to P11 and IP22 shown in
(B7).

We now briefly recap the perturbation theory used in [27]
to derive solutions for d2 � 1. We define a slow timescale
X = qτ , as well as the parameter q = −2d2. The solutions y
can be taken to depend on both scales, such that y(τ, X ). The
absolute derivative d/dτ in (B11) can then be split into two
independent parts:

d

dτ
= ∂τ + q ∂X , (B12)

which means that Mathieu’s equation (B11) becomes

(∂τ + q ∂X )2y(τ, X ) + [1 − 2q cos(2τ + φd2)] y(τ, X ) = 0.

(B13)
We then expand the solution y(τ, X ) for small q as y(τ, X ) =
y0(τ, X ) + q y1(τ, X ) + O(q2) and insert this into the differ-
ential equation above. We first recover the regular harmonic
oscillation equation for y0, which is the limiting case as
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q → 0:

∂2
τ y0 + y0 = 0. (B14)

To solve this equation we propose the following trial solution:

y0(τ, X ) = A(X ) ei τ + A∗(X ) e−i τ . (B15)

Here, A(X ) is still undetermined. We continue with the equa-
tion for y1. To first order in q, we find

∂2
x y1 + 2 ∂τ ∂X y0 + y1 − 2 cos(2τ + φd2)y0 = 0. (B16)

Inserting our solution for y0, we find

∂2
τ y1 + y1 + 2 i

√
a

(
∂A(X )

∂X
ei

√
a τ − ∂A∗(X )

∂X
e−i

√
a τ

)

− 2 cos(2x+φd1)[A(X ) ei τ +A∗(X ) e−i τ ]=0. (B17)

This expression can be rearranged into

∂2
τ y1 + y1 + 2 i

(
∂A(X )

∂X
ei τ − ∂A∗(X )

∂X
e−i τ

)

− (
ei(2τ+φd2 ) + e−i(2τ+φd2 ))[A(X ) eiτ + A∗(X ) e−iτ ] = 0.

(B18)

We expand the exponentials to find

∂2
τ y1 + a y1 +

(
2i

∂A(X )

∂X
− A∗(X ) eiφd2

)
eiτ

+
(

2i
∂A∗(X )

∂X
+ A(X ) e−iφd2

)
e−iτ

− A(X ) e3iτ+iφd2 − A∗(X ) e−3iτ−iφd2 = 0. (B19)

In order for the solution to be stable, we require that secular
terms such as resonant terms eiτ vanish. If these do not vanish,
the perturbation y1 will grow exponentially [104]. We also
neglect terms that oscillate much faster, such as e3ix.

This leaves us with the condition that(
2i

∂A∗(X )

∂X
+ A(X ) e−iφd2

)
= 0, (B20)

which can be differentiated again and solved with the trial so-
lution A(X ) = (c1 − i c2) e(X+iφd2 )/2 + (c3 − i c4) e−(X−iφd1 )/2

for the parameters c1, c2, c3, and c4. From the requirement
in (B20), it is now possible to fix two of the coefficients in
(B22). We differentiate A(X ) and use (B20) to find that the
conditions c1 = c2 and c3 = −c4 must always be fulfilled.
Therefore, A(X ) becomes

A(X ) = c1(1 − i) e(X+iφd2 )/2 + c3(1 + i) e−(X−iφd2 )/2. (B21)

We then recall that X = qx and after combining some expo-
nentials, we obtain the full trial solution for the zeroth order
term y0:

y0(x) = A(qτ ) ei τ + A∗(qτ ) e−iτ

= [
c1(1 − i) eτq/2 + c3(1 + i) e−τq/2

]
ei x+iφd2/2 + [

c1(1 + i) eτq/2 + c3(1 − i) e−τq/2
]

e−iτ−iφd2/2. (B22)

Using the fact that q = −2d2, and rearranging, we find

y0 = 2
(
c1 e−d2τ + c3 ed2τ

)
cos(x + φd2/2) + 2

(
c1 e−d2τ − c3 ed2τ

)
sin(x + φd2/2). (B23)

The coefficients are then fixed by the initial conditions, which for P11 read y0(0) = 1 and ẏ0(0) = 0, and IP22 read y0(0) = 0 and
ẏ0(0) = 1. Using these, we find the following solutions:

P11 = e−d2τ {(e2d2τ − 1)[sin(τ + φd2) − d2 sin(τ )] + d2(e2d2τ + 1) cos(τ + φd2) − (e2d2τ + 1) cos(τ )}
2[d2 cos(φd2) − 1]

,

IP22 = e−d2τ
[
(e2d2τ − 1) cos(τ + φd2) − (e2d2τ + 1) sin(τ )

]
2[d2 cos(φd2) − 1]

. (B24)

Using (B4), we can derive the F coefficients. They are how-
ever rather lengthy, so we will not display them here.

APPENDIX C: QUANTUM FISHER INFORMATION

In this Appendix we derive the expressions for the QFI
for the different cases considered in the main text. In [28],
the general expression for the QFI for estimating parameters
of the Hamiltonian (3) with an initial coherent state of light
was given in Eq. (10). Here we provide a derivation of the
expression used in (15) in the main text, which leaves the
photon number variance general.

As mentioned in the main text, given unitary dynam-
ics that encode the parameter θ on an initial state ρ̂(0) =∑

n λn |λn〉 〈λn|, the QFI can be written in terms of the fol-
lowing general expression [59,60]:

Iθ = 4
∑

n

λn
(〈λn| Ĥ2

θ |λn〉 − 〈λn| Ĥθ |λn〉2
)

− 8
∑
n �=m

λnλm

λn + λm
|〈λn| Ĥθ |λm〉|2, (C1)
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where Ĥ = −i Û †
θ ∂θÛθ , where λn is an eigenvalue of the ini-

tial state ρ̂(0), and where θ is the parameter that we wish
to estimate. For a linear displacement with d1, like the one
considered in the main text, we find that Ĥd1 is given by

Ĥd1 = B N̂a + C+B̂+ + C−B̂−. (C2)

Using the initial state in (10), the eigenstates of which are
given by |λn〉 = |ψc〉 |n〉, as well as the following expectation
values:

〈n| B̂2
+ |n〉 = 2n + 1,

〈n| B̂2
− |n〉 = 2n + 1,

〈n| B̂+B̂− |n〉 = − 〈n| B̂−B̂+ |n〉 = i, (C3)

and by then noting that 〈n| B̂± |n〉 = 0, we find that

〈ψc| 〈n|H2
d1 |ψc〉 |n〉=B2

〈
N̂2

a

〉+(
C2

++C2
−
)
(2n + 1) (C4)

and

〈ψc| 〈n| Ĥd1 |ψc〉 |n〉 = B 〈N̂a〉 . (C5)

We then examine the off-diagonal terms in (C1). We can write
these as

| 〈ψc| 〈n| |Ĥθ | |ψc〉 |m〉 |2

= (
C2

+ + C2
−
)
[(m + 1)δn,m+1 + (n + 1)δm,n+1]. (C6)

We then evaluate the two sums in (C1). We note that, for the
thermal state, λn = tanh2n(rT )/ cosh2(rT ). Using the follow-
ing two expressions (where we employ the geometric series
and its derivative):

1

cosh2(rT )

∞∑
n=0

tanh2n(rT )(2n + 1) = cosh(2 rT ),

1

cosh2(rT )

∞∑
n �=m

tanh2n(rT ) tanh2m(rT )

tanh2n(rT ) + tanh2m(rT )

[(m + 1)δn,m+1 + (n + 1)δm,n+1]

= 1

2
tanh(2rT ) sinh(2rT ), (C7)

where the last sum can be evaluated by noting that the delta-
functions will kill off any diagonal elements, which allows us
to sum over all elements, this allows us to write the QFI as

I = 4
[
B2(�N̂a)2 + sech(2rT )

(
C2

+ + C2
−
)]

, (C8)

where (�N̂a)2 = 〈N̂2
a 〉 − 〈N̂a〉2

is the photon number variance,
and where the coefficients are given in the main text.

1. Derivation of the photon number variance
for initially squeezed states

Here we derive the QFI for the optical state when the cavity
field is initialized in a squeezed displaced state. For conve-
nience we make use of the definition of two-photon coherent
states |μc, ζ 〉 = Ŝ(ζ ) |μc〉, where Ŝ(ζ ) is the usual squeezing
operator and ζ = reiϕ , though one can readily move between
definitions using the standard braiding relations. By (20) the

relevant quantity is (�N̂a)2
|μc,ζ 〉. This can be calculated in a

number of ways, but a convenient approach is to first define a
new operator âζ as the linear combination [105],

âζ = Ŝ(ζ )âŜ†(ζ ) ≡ uâ + vâ†, (C9)

where we adopt the usual convention u = cosh(r) and v =
eiϕ sinh(r) satisfying |u|2 − |v|2 = 1. Then |μc, ζ 〉 are eigen-
states of âζ ,

âζ |μc, ζ 〉 = μc |μc, ζ 〉 . (C10)

Similarly, we can transform âζ back to â through

â = u∗âζ − vâ†
ζ . (C11)

It is also useful to note the commutation relations,

[âζ , â] = −v, (C12a)

[âζ , â†] = u. (C12b)

With these expressions it is then straightforward to show

〈â〉ζ = 〈μc, ζ | u∗âζ − vâ†
ζ |μc, ζ 〉 = u∗μc − vμ∗

c ≡ μζ ,

〈â†â〉ζ = 〈μc, ζ | (uâ†
ζ − v∗âζ )â |μc, ζ 〉

= (uμ∗
c − v∗μc)〈â〉ζ + |v|2 = |μζ |2 + |v|2, (C13)

where we have used (C12a) to pass âζ through â in the second
line. Higher order terms can be found in a similar manner,
leading to the following useful results:

〈â2〉ζ = μ2
ζ − u∗v, (C14)

〈â3〉ζ = μζ 〈â2〉 − 2u∗vμζ , (C15)

〈â4〉ζ = μ2
ζ 〈â2〉 − u∗v

(
2μ2

ζ + 3〈â2〉), (C16)〈
N̂2

a

〉
ζ

= |μζ |2(|u|2 + 3|v|2 + |μζ |2) − (
μ∗2

ζ u∗v + μ2
ζ uv∗)

+ 2|u|2|v|2 + |v|4. (C17)

Using (C13) and (C17) one can then show that the photon
number variance is given by

(�N̂a)2 = 〈
N̂2

a

〉 − 〈N̂a〉2

= |μζ |2(|u|2 + |v|2) − (
μ∗2

ζ u∗v + μ2
ζ uv∗)

+ 2|u|2|v|2. (C18)

Note, in the limit of zero squeezing, we recover |μc|2 as
expected. A more convenient form is to substitute back in for
u and v. With a little algebra we find

(�N̂a)2 = |μc|2e4r + 1
2 sinh2(2r) − 2Re

[
e− iϕ

2 μc
]2

sinh(4r).

(C19)

Since the photon number variance enters into the QFI
[see (C8)], we note that the QFI is maximized when e

iϕ
2 μc is

purely imaginary. We then have an enhancement proportional
to e4r over coherent state driving of the mirror (for large
photon number), along with a squeezing dependent vacuum
contribution.
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2. Resonant gravitational field with constant light–matter coupling

We assume that k = k0 is constant and D2 = 0. Then ξ = e−iτ . For a general state with photon number variance (�N̂a)2, the
QFI at resonance with �d1 = 1 becomes

I (�d1=1) = k2
0 (�N̂a)2(−4a[τ − sin(τ )] + ε[2 τ cos(φd1) − 4 sin(τ + φd1) + sin(2τ + φd1) + 3 sin(φd1)])2

+ 1
4 sech(2rT )(4{τε cos(φd1) + sin(τ )[ε cos(τ + φd1) + 2a]}2

+ {2τε sin(φd1) + ε cos(2τ + φd1) − ε cos(φd1) + 4a[cos(τ ) − 1]}2). (C20)

3. Resonant driving and modulated coupling

If we assume that k(τ ) = k0 cos(�kτ + φk ) and D2 = 0. Again, ξ = e−iτ . If the modulation of the coupling and the
oscillations of the gravitational field are at the same frequency, i.e., � := �d1 = �k , the QFI becomes

I (�d1,k=�k ) = k2
0 (�N̂a)2

�2(�2 − 1)4 (−2a�4 sin(τ + φk ) − 2a�3 sin(τ + φk ) + 2a�2 sin(τ + φk )

+ 4a�2 sin(τ� + φk ) + 2a(� − 1)2(� + 1)� sin(τ − φk ) + 2a� sin(τ + φk ) − 4a sin(τ� + φk )

+ 4a�4 sin(φk ) − 8a�2 sin(φk ) + 4a sin(φk ) + �3ε sin(τ� + τ − φk + φd1) − �3ε sin(τ� + τ + φk + φd1)

− �3ε sin[τ (−�) + τ − φk − φd1] + �3ε sin[τ (−�) + τ + φk − φd1] − 2�2ε sin(τ� + τ − φk + φd1)

+ �2ε sin(2τ� + φk + φd1) + 2�2ε sin[τ (−�) + τ + φk − φd1] + 2τ (�2 − 1)�ε cos(φd1 − φk )

+ �ε sin(τ� + τ − φk + φd1) + �ε sin(τ� + τ + φk + φd1) + �ε sin[τ (−�) + τ − φk − φd1]

+ �ε sin[τ (−�) + τ + φk − φd1] − ε sin(2τ� + φk + φd1) + 4�2ε sin(φd1 − φk )

− �2ε sin(φk + φd1) + ε sin(φk + φd1))2

+ 4sech(2rT )

[(
a[− cos(τ )] + a + ε[� sin(τ ) sin(τ� + φd1) + cos(τ ) cos(τ� + φd1) − cos(φd1)]

�2 − 1

)2

+ (sin(τ )[a(�2 − 1) − ε cos(τ� + φd1)] + �ε{sin(φd1)[cos(τ ) cos(τ�) − 1] + cos(τ ) cos(φd1) sin(τ�)})2

(�2 − 1)2

]
.

(C21)

For complete resonance with the mechanics, i.e., for � = �d = �k = 1, the QFI reduces to

I (�d1,k=1) = 1
16 k2

0 (�N̂a)2(4a sin(τ − φk ) − 12a sin(τ + φk ) + 8aτ cos(τ + φk ) + 16a sin(φk )

+ 2τ 2ε sin(φd1 − φk ) + ε sin(2τ − φk + φd1) − 2ε sin(2τ + φk + φd1) − 2τε cos(φd1 − φk )

+ 2τε cos(φk + φd1) + 2τε cos(2τ + φk + φd1) − ε sin(φd1 − φk ) + 2ε sin(φk + φd1))2

+ 1
4 sech(2rT )(4{sin(τ )[2a + ε cos(τ + φd1)] + τε cos(φd1)}2

+ [4a cos(τ ) − 4a + 2τε sin(φd1) + ε cos(2τ + φd1) − ε cos(φd1)]2). (C22)

We see that the scaling with time of the QFI depends on the choice of the phases φd1 and φk . In the case of φd1 − φk = π/2
for example, the QFI contains terms proportional to τ 4. This is a highly unusual scaling: Normally, under the conditions that
coherence is retained, one obtains a scaling of the QFI ∝ τ 2, as is the case, e.g., for a single harmonic oscillator whose frequency
one wants to estimate [106], which in itself represents an advantage over the classical scaling ∝ τ . It implies that being able to
maintain coherence over long times pays off much more for the optomechanical system with its nonlinear coupling than for a
single harmonic oscillator, and suggests to rather reduce the coupling k and increase τ instead in the presence of decoherence,
rather than trying to make the coupling as strong as possible, as this is expected to reduce the coherence time due to enhanced
nonclassicality.

In Appendix D we show that light and mechanics disentangle at times that are multiples of sπ , with s integer for fractional
frequencies � = �frac = 1 + 2n1/s, where n1 > −s/2 is an integer. At the decoupling times τ = q sπ , with q integer the QFI
becomes

I (�frac )(τ = q sπ ) = k2
0 (�N̂a)2

4n2
1(n1 + s)2(2n1 + s)2

s2(πq s2 ε(2n1 + s) cos(φd1 − φk ) − 8a n1 (n1 + s)[(−1)qs − 1] sin(φk ))2

+ 4 a2 [(−1)qs − 1]2 sech(2rT ). (C23)
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4. Resonant driving and modulated mechanical frequency

We here assume that the optomechanical coupling is constant k(τ ) = k0 and that the mechanical frequency is modified as
D2(τ ) = d2 cos(2τ + φd2). The general QFI is a long expression that we will not give here. Instead, we refer to the main text for
plots and simplified expressions for special cases. In particular, for the case of purely oscillating gravitational fields a = 0 and
rT � 1, the QFI is maximized for φd2 = −π/2 and φd1 = 0 and becomes approximately

I (�d2=2) = 2

3
k2

0ε
2(�N̂a)2

[
6(ed2τ − 1)

2

d2
2

− 15
(
ed2τ − 1

)2 + 6 sin2(τ )
[
ed2τ cos(τ ) − 2

]2 + 12(ed2τ − 1) sin(τ )
[
ed2τ cos(τ ) − 2

]
d2

+ (
ed2τ − 1

){(9 cos(2τ ) + 3) sinh(d2τ ) + 6 sin2(τ ) cosh(d2τ ) + 16[cos3(τ ) − 1]}
]
. (C24)

APPENDIX D: DERIVATION OF THE FRACTIONAL FREQUENCIES FOR A MODULATED
OPTOMECHANICAL COUPLING

From the time evolution operator, we can deduce that the light and mechanics decouple if FN̂aB̂+ and FN̂aB̂+ vanish. We can

construct the function KN̂a
:= FN̂aB̂− + iFN̂aB̂+ and look for the zeros of |KN̂a

|2. In the following we study the case of time-
dependent light–matter coupling k(τ ) = k0 cos(�kτ + φk ).

We obtain∣∣KN̂a

∣∣2 = k2
0

4(�2
k − 1)2 [((�k + 1) sin[(�k − 1)τ + φk] + (�k − 1) sin[(�k + 1)τ + φk] − 2�k sin(φk ))2

+ 4(�k sin(τ ) sin(�kτ + φk ) + cos(τ ) cos(�kτ + φk ) − cos(φk ))2]. (D1)

For �k = 1 we obtain the resonance with the mechanics and we find that∣∣KN̂a

∣∣2 → 1
8 k2(2τ 2 + 2τ {sin[2(τ + φk )] − sin(2φk )} + 1 − cos(2τ )),

which has no zeros. Therefore, on resonance, light and mechanics never decouple completely. To study all other cases besides
resonance, and to write the equation into a nicer form, we set �k = (x + 1)/(x − 1) and find

∣∣KN̂a

∣∣2 = k2
0 (x − 1)2

16x2

{[
x sin

(
2

x − 1
τ + φk

)
+ sin

(
2x

x − 1
τ + φk

)
− (x + 1) sin(φk )

]2

+
[
−x cos

(
2

x − 1
τ + φk

)
+ cos

(
2x

x − 1
τ + φk

)
+ (x − 1) cos(φk )

]2}
. (D2)

Sufficient conditions for the vanishing of |KN̂a
|2 are that

cos

(
2

x − 1
τ + φk

)
− cos(φk ) = −2 sin

(
1

x − 1
τ + φk

)
sin

(
1

x − 1
τ

)
= 0, (D3)

cos

(
2x

x − 1
τ + φk

)
− cos(φk ) = −2 sin

(
x

x − 1
τ + φk

)
sin

(
x

x − 1
τ

)
= 0, (D4)

sin

(
2

x − 1
τ + φk

)
− sin(φk ) = 2 cos

(
1

x − 1
τ + φk

)
sin

(
1

x − 1
τ

)
= 0, (D5)

sin

(
2x

x − 1
τ + φk

)
− sin(φk ) = 2 cos

(
x

x − 1
τ + φk

)
sin

(
x

x − 1
τ

)
= 0, (D6)

which are fulfilled if and only if τ/(x − 1) = n1π and
τx/(x − 1) = n2π with n1 and n2 integers. Then, τ = (n2 −
n1)π , x = n2/n1, and �k = (n2 + n1)/(n2 − n1). By defining
s = n2 − n1 > 0, we find the disentangling times τsep = sπ
and the fractional frequencies �frac = 1 + 2n1/s, where n1 >

−s/2 to obtain positive frequencies. There are infinitely many
fractional frequencies �frac for which there exist times that

are multiples of π at which light and mechanics decouple.
Furthermore, from the structure of �frac, we see that for each
multiple of τsep given by τ = q sπ , we can find an ñ1 = q n1

such that 1 + 2ñ1/(qs) = �frac. Therefore, |KN̂a
|2 vanishes for

all times that are multiples of sπ . For a given �frac, the small-
est decoupling time sπ is given by the smallest integers n1 and
s > 0 whose quotient n1/s is equivalent to (�frac − 1)/2.

013159-19



SOFIA QVARFORT et al. PHYSICAL REVIEW RESEARCH 3, 013159 (2021)

APPENDIX E: CLASSICAL FISHER INFORMATION

In this Appendix we compute the classical Fisher infor-
mation (CFI) for homodyne and heterodyne measurement.
The results presented here provide a generalization of those
presented in Refs. [25,26]. We strictly focus on cases where
the light and mechanics are in a separable state, which means
that we can account for the modulation of the optomechanical
coupling for fractional frequencies discussed in Sec. IV A, but
we cannot include the squeezing modulation in Sec. IV B.

The CFI for a POVM {|x〉〈x|} is given by

I =
∫

dx
1

p(x)

(
∂ p(x)

∂θ

)2

, (E1)

where p(x) ≡ p(x|θ ) is the conditional probability of a mea-
surement obtaining outcome x given the parameter value θ .
In practice, we will be interested in the Fisher information
for the field state alone, which is equivalent to a measure-
ment |x〉〈x|c ⊗ 1m on the global state. The derivative of the
conditional probability associated with an estimation of the
parameter θ = d1 is then

∂d1 p(x|d1) = Tr
[
∂d1 (Û ρ̂0Û

†) |x〉〈x| ⊗ 1
]

= iTr
{
Û

[
Ĥd1 , ρ0

]
Û † |x〉〈x| ⊗ 1

}
, (E2)

where ρ0 = |ψ0〉〈ψ0| ⊗ ρ0,m is the initial global state (as-
sumed to be separable) and Ĥd1 = −iÛ †∂d1Û is the Hermitian
QFI generator given explicitly by [28]

Ĥd1 = BN̂a + C+B̂+ + C−B̂−. (E3)

The general evaluation of (E1) is difficult, however in this
work we are primarily concerned with instances where the
field and mirror completely disentangle, i.e., Û = Ûc ⊗ Ûm.
This means that terms in Ĥd1 which act solely on the mechan-
ics do not contribute to (E2), and so we are free to consider
Ĥd1 = BN̂a ≡ Ĥc

d1. Now, as Ĥc
d1 commutes with Û (τ ) we can

then write[
∂d1 p(x)

]2 = 2|〈ψτ |x〉|2〈ψτ |Ĥc
d1

|x〉〈x|Ĥc
d1

|ψτ 〉
− (〈ψτ |x〉〈x|Ĥc

d1
|ψτ 〉

)2 − (〈ψτ |Ĥc
d1

|x〉〈x|ψτ 〉
)2

,

(E4)

where |ψτ 〉 = Ûc(τ ) |ψ0〉 is the (disentangled) cavity state.
Noting that p(x) = |〈ψτ |x〉|2 and 1 = ∫

dx |x〉〈x|, the CFI can
be written

Ic = 2〈ψ0|
(
Ĥc

d1

)2|ψ0〉 − (R + R∗), (E5)

where

R =
∫

dx

(
〈x|Ĥc

d1
|ψτ 〉

〈x|ψτ 〉

)2

p(x)

≡
∫

dx p(x)h(x, ψτ )

= 〈h(x̂, ψτ )〉ψτ
. (E6)

The first term in (E5) is relatively straightforward to cal-
culate, and depends only on the expectation values of the
powers of the number operator up to fourth order. For coher-
ent states |μ〉, these can be found via the Bell polynomials

〈N̂n〉μ = Bn(|μ|2). On the other hand, finding analytic ex-
pressions for the R terms is difficult in general, though
as noted in Sec. V, a particular simplification exists when
〈x|Ĥc

d1
|ψτ 〉 = f (x, ψτ )〈x|ψτ 〉, for some function f , in which

case h(x̂, ψτ ) = f 2(x̂, ψτ ) (where we adopt the convention
that the hat on x̂ is post squaring, unless the power is after the
argument). If the cavity state is initially in a coherent state,
this can be achieved when FN̂2

a
is engineered to be a multiple

of 2π (at the decoupling time), then7

|ψτ 〉 = e−iFN̂2
a

N̂2
a e−iFN̂a N̂a |μc〉 → |e−iFN̂a μc〉 ≡ |μ̃c〉 . (E7)

i.e., |μ̃c〉 is again a coherent state.
In [25] it was shown that for this special case homodyne

measurements saturate the QFI for a constant gravitational
field, while in [26] this was confirmed numerically when
the parameter of interest is also encoded in a constant fre-
quency shift (along with the observation that heterodyne
measurements preserve a similar scaling). Here we provide
an alternate derivation which holds for arbitrary modulations,
provided the measurements are performed when the optical
and mechanical modes completely disentangle.

1. Homodyne measurements

We begin by computing the CFI for homodyne measure-
ments.

a. Coherent states

For homodyne measurements the relevant POVM is con-
structed via the state |x〉 = |xλ〉, defined as the eigenstate of
the operator,

x̂λ = âe−iλ + â†eiλ

√
2

. (E8)

A rearrangement of its eigenvalue equation leads to the fol-
lowing action of â as

〈xλ| â† = 〈xλ|
(√

2xλe−iλ − âe−2iλ
) ≡ 〈xλ| f (xλ, â). (E9)

To calculate the R term, we note that under the restriction that
|ψτ 〉 = |μ̃c〉, then from (E6) and (E9) it is straightforward to
show

h(xλ, ψτ ) = [Bμ̃c f (xλ, μ̃c)]2. (E10)

The last step is to take the expectation value of this function
once xλ is promoted to an operator. Here it is useful to note

7In the frame rotating with the optical field.

013159-20



OPTIMAL ESTIMATION OF TIME-DEPENDENT … PHYSICAL REVIEW RESEARCH 3, 013159 (2021)

that8

〈μc|x̂n
λ|μc〉 = 1

(2i)n
Hn(i〈μc|x̂λ|μc〉), (E11)

where Hn are the Hermite polynomials. Finally, with a little
algebra we find

Iμc = 4B2Im(μ̃ce−iλ)2. (E12)

Note, when μ̃ce−iλ is purely imaginary, the CFI simplifies to

I (hom)
μc

= 4|μc|2B2, (E13)

which is exactly the QFI given in (20). Note, however, that
when μ̃ce−iλ is purely real the CFI is zero.

b. Squeezed states

For squeezed initial cavity states |μc, ζ 〉 = Ŝ(ζ ) |μc〉, with
squeezing parameter ζ = reiϕ , we can evaluate the CFI using
a similar approach to above. The first term in (E5) is inde-
pendent of the POVM and is given by B2〈N̂2

a 〉ζ . This can
be found immediately from the expectation value (C17). In
order to calculate the corresponding R terms, we must eval-
uate the overlap 〈xλ|N̂aÛcŜ(ζ )|μc〉 at the chosen decoupling
time. Again, we will consider the special case where FN̂2

a
is

a multiple of 2π , then by using the identity e−AN̂2
a âeAN̂2

a =
eA(2N̂a+1)â and considering the action on a coherent state, we
find 〈xλ|N̂aÛcŜ(ζ )|μc〉 = 〈xλ|N̂aŜ(ζ̃ )Ûc|μc〉 = 〈xλ|N̂a|μ̃c, ζ̃ 〉,
where ζ̃ = reiϕ̃ with ϕ̃ = ϕ − 2FN̂a

. Following Appendix C 1,
we define the operator âζ̃ = Ŝ(ζ̃ )âŜ†(ζ̃ ), with forward and
backwards transformations given explicitly by

âζ̃ = ũâ + ṽâ†, (E14a)

â = ũ∗âζ̃ − ṽâ†
ζ̃
, (E14b)

where âζ̃ |μ̃c, ζ̃ 〉 = μ̃c |μ̃c, ζ̃ 〉, and the functions ũ = u =
cosh(r) and ṽ = e−2iFN̂a v = eiϕ̃ sinh(r) depend explicitly on
the parameter ζ . A rearrangement of (E14a) [and the adjoint
of (E14b), respectively] gives

âζ̃ =
â + ṽâ†

ζ̃

ũ∗ , (E15a)

â† =
â†

ζ̃
− ṽ∗â

ũ∗ . (E15b)The next step is to update (E9) to remove the explicit de-
pendence on â. Using the adjoint of (E15b) and collecting â†

terms on the left-hand side, we have

〈xλ| â† = ũ

ũ − e−2iλṽ
〈xλ|

(√
2xλe−iλ − 1

ũ
e−2iλâζ̃

)

= ũ

ũ − e−2iλṽ
〈xλ| f

(
xλ,

âζ̃

ũ

)
. (E16)

8This identity can be easily derived by noting that for any pair of
coherent states |μ1〉 and |μ2〉,

〈μ1|x̂n
λ+ π

2
|μ2〉 = 1

(2i)n

dn

dtn
〈μ1|Ĝ|μ2〉

∣∣∣∣
t=0

,

where Ĝ = e
2ix̂λ+ π

2
t = D̂(

√
2eiλt ) and D̂ is the usual displacement

operator. By evaluating the overlap, and using the generating func-
tion of Hermite polynomials, e2xt−t2 = ∑∞

n=0 Hn(x) tn

n! , we find the
desired result.

Similarly the overlap,

〈xλ| â†â |μ̃c, ζ̃ 〉 = 1

ũ − e−2iλṽ
〈xλ|

(√
2xλe−iλ − 1

ũ
e−2iλâζ̃

)

×(âζ̃ − ṽâ†) |μ̃c, ζ̃ 〉 . (E17)

Expanding, and making use of the (tilded) commutation rela-
tion (C12b), we find

√
h(xλ, ψτ ) = B

〈xλ| N̂a |μ̃c, ζ̃ 〉
〈xλ|μ̃c, ζ̃ 〉 = B

ũ − e−2iλṽ

[
μ̃c f

(
xλ,

μ̃c

ũ

)

− ũṽ

ũ − e−2iλṽ
f

(
xλ,

μ̃c

ũ

)2

+ ṽe−2iλ

]
. (E18)

In order to calculate the term R = 〈h(x̂λ, ψτ )〉ψτ
we need the

expectation values of x̂λ on the squeezed states |μ̃c, ζ̃ 〉 (up to
fourth power). Here we note that the operator x̂λ can be written
in terms of âζ and â†

ζ as

x̂λ =
w∗âζ̃ + wâ†

ζ̃√
2

= |w|
âζ̃ e−iλ̃ + â†

ζ̃
eiλ̃

√
2

,

where w = ũeiλ − ṽe−iλ ≡ |w|eiλ̃. Thus we can see that the
required expectation values can be found in a similar way as
to those over coherent states,

〈μ̃c, ζ̃ |xn
λ|μ̃c, ζ̃ 〉 = |w|n

(2i)n
Hn

(
i〈μ̃c, ζ̃ |xλ|μ̃c, ζ̃ 〉

|w|
)

. (E19)

Together with (C17) we can now evaluate the CFI exactly.
However, one can greatly simplify the problem by noting that
the aim is to find the optimal bound. From (C19) we can ex-
pect that the maximum CFI also occurs when Re[e− iϕ

2 μc] = 0,
while in the limit of zero squeezing, (E12) suggests the condi-
tion Re[μ̃ce−iλ] = 0. Note, in the latter one needs to choose λ

based not only on the initial state, but on the additional phase
FN̂a

picked up after the evolution. Thus the optimal λ varies
with time. Writing μc = |μc|eiχ these two conditions imply

ϕ̃ = ±π + 2
(
χ − FN̂a

)
,

λ = ±π

2
+ χ − FN̂a

,

λ̃ = λ,

(E20)

and so w = e−reiλ, with 〈x̂λ〉 = 0. With these simplifications,
and together with (C17) for the first term in (E5), the CFI is
given by

I (hom)
ζ = 4B2|μc|2e4r . (E21)

This is less than the maximum QFI by only a vacuum contri-
bution. In general, however, the CFI can still be nonzero when
μc = 0,

I (hom)
ζ (μc = 0) = B2 2 sinh2(2r) sin2(ϕ̃ − 2λ)

[cosh(2r) − sinh(2r) cos(ϕ̃ − 2λ)]2
.

(E22)

This reaches a maximum of Ihom
ζ = 2B2 sinh2(2r) for ϕ̃ −

2λ = ±2[nπ ± tan−1(e−2r )]. However, for all but very small
photon number (and large r) the optimal CFI is given
by (E21).
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2. Heterodyne measurements

The heterodyne measurement case is somewhat more
straightforward as the probabilities are calculated with respect
to coherent states. Note that an additional factor of 1/π ap-
pears in the definition of I , Eq. (E1), to account for the identity
operator in the coherent state basis though this is then removed
when moving to the expectation value expressions.

a. Coherent states

When there is no squeezing of the initial cavity states the
CFI can be evaluated quickly. Replacing |x〉 = |β〉 in (E6) we
have

h = B2μ̃2
c (β∗)2, (E23)

and so,

R = B2〈μ̃2
c â†2〉

t = B2|μc|4. (E24)

The CFI is then given by

Ihet
μc

= 2|μc|2B2, (E25)

which is exactly half of the QFI (20). Thus the precision ob-
tainable through heterodyne measurements also preserves the
optimal scaling behavior, though in general is less favorable
than performing homodyne measurements.

b. Squeezed coherent states

The extension to squeezed states can be performed using a
similar analysis to Appendix E 1 b above. Using the adjoint of
(E15b) one can calculate the overlap 〈β|â†â|μ̃c, ζ̃ 〉. This leads

to h = B2[ β∗
ũ (μ̃c − ṽβ∗)]

2
and so,

R = B2

(
μ̃2

c

ũ2
〈â†2〉ζ̃ − 2

μ̃cṽ

ũ2
〈â†3〉ζ̃ + ṽ2

ũ2
〈â†4〉ζ̃

)
, (E26)

where the required expectation values are given in Appendix
C 1, Eqs. (C14)–(C16). After some algebra, and again making
use of (C17), we find that the CFI is given by

Ihet
ζ = 2B2

[|μc|2e3rsech(r) + 2 sinh2(r)

− 2 Re
[
e− iϕ̃

2 μ̃c
]2

sinh(3r)sech(r)
]
. (E27)

Note e− iϕ̃
2 μ̃c = e− iϕ

2 μc, which means one can fix the third
term to zero (and thereby maximize Ihet

ζ ) by choice of the
initial state alone. However, even for large photon numbers,
the CFI is smaller than the QFI by a factor of 2er cosh(r).

APPENDIX F: EXPECTATION VALUES
AND VARIANCES FOR x̂m

In Sec. VII E in the main text, we discussed the fact that a
gravitational effect causes the mechanical element to become
displaced along the x axis of the system. In order for the
optomechanical Hamiltonian to remain valid, this displace-
ment cannot be too large. In the main text we identified the
requirements 〈x̂m〉 � l and �x̂m � l , where l is a length-
scale characteristic of the system at hand (it differs for the
derivation of the Hamiltonian for levitated system and Fabry-
Pérot moving-end mirrors, for example).

In this Appendix we explore this more closely by comput-
ing the expectation value of the mechanical position operator
x̂m = x0(b̂† + b̂), where x0 = √

h̄/(2mωm ). In [27] it has been
shown that, for the dynamics we consider and for an initially
coherent state of the mechanical subsystem |μm〉, 〈b̂(τ )〉 is
given by

〈b̂(τ )〉 = α(τ ) μm + β(τ ) μ∗
m + �(τ ) + �(τ ) 〈N̂a〉 , (F1)

where α(τ ) and β(τ ) are given in (B6), and where 〈N̂a〉 de-
pends on the choice of the initial optical state. The quantities
�(τ ) and �(τ ) are given by

�(τ ) = [α(τ ) + β(τ )]FN̂a B̂− − i[α(τ ) − β(τ )]FN̂a B̂+ ,

�(τ ) = [α(τ ) + β(τ )]FB̂− − i[α(τ ) − β(τ )] FB̂+ . (F2)

Therefore, the expectation value of x̂m becomes

〈x̂m(τ )〉 = 2 x0 Re[α(τ )μm + β(τ )μ∗
m + �(τ ) + �(τ ) 〈N̂a〉].

(F3)

This expression can be rewritten as (ignoring the dimensionful
normalization factor for now)

〈b̂†(τ ) + b̂(τ )〉
= ξ (τ ) μm + ξ (τ )∗ μ∗

m + [ξ (τ ) + ξ (τ )∗](FB̂−

+ 〈N̂a〉 FN̂a B̂− ) − i[ξ (τ ) − ξ (τ )∗](FB̂+ + 〈N̂a〉 FN̂a B̂+ )

= 2Re[ξ (τ ) μm] + 2Re[ξ (τ )](FB̂− + 〈N̂a〉 FN̂a B̂− )

+ 2Im[ξ (τ )](FB̂+ + 〈N̂a〉 FN̂a B̂+ ). (F4)

When the mechanical element is in the ground state with
μm = 0, this becomes

〈b̂†(τ ) + b̂(τ )〉 = 2 Re[ξ (τ )](FB̂− + 〈N̂a〉 FN̂a B̂− )

+ 2Im[ξ (τ )](FB̂+ + 〈N̂a〉 FN̂a B̂+ ).

Through a similar calculation we find that the variance is
given by

(�x̂m )2 = x2
0[1 + 2 Re[α(τ )β(τ )]

+ 2 |β(τ )|2 + 4{Re[�(τ )]}2(�N̂a)2]. (F5)

We note that 〈x̂m〉 scales with 〈N̂a〉, and that �x̂m scales with
�N̂a. For coherent states |μc〉, we find that 〈N̂a〉 = (�N̂a)2 =
|μc|2, which means that the strongest bound on |μc| is set by
〈x̂m〉, since �x̂m ∝ |μc|. For squeezed coherent states |μc, ζ 〉,
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on the other hand, we find that

〈N̂a〉|μc,ζ 〉 = |μc|2 e2r + sinh2(r) − 2 Re
[
e−i ϕ

2 μc
]2

sinh(2r),
(F6)

where we recall that r is the squeezing factor. As noted in the
main text, we can always choose the phase ϕ such that the last
term is zero.

We explore four different settings: (i) undriven evolution,
as a comparison, (ii) resonant driving of the gravitational
field, (iii) a modulated gravitational field and optomechanical
coupling, and finally (iv) a modulated gravitational field and a
modulated mechanical frequency.

1. Mechanical expectation values

In this section we compute 〈x̂m〉 for the different cases of
the dynamics considered in the main text.

a. Undriven evolution

For free undriven evolution, we obtain ξ = e−iτ , FB̂+ =
FB̂− = 0, and

FN̂aB̂+ = −k0 sin(τ ),

FN̂aB̂− = k0[cos(τ ) − 1], (F7)

which leads to

〈x̂m〉 = 2 x0 k0 〈N̂a〉 [1 − cos(τ )]. (F8)

(�x̂m )2 = x2
0

(
1 + 4 k2

0 (�N̂a)2{1 − [2 − cos(τ )] cos(τ )}).
(F9)

The conditions that follow from the above analysis are that
2 x0 k0 〈N̂a〉 � l and 2 x0 k0 �N̂a � l such that the interaction
Hamiltonian is still valid.

b. Constant coupling and a resonant gravitational field

For resonant direct driving, i.e., D1(τ ) = −d1[a +
ε cos(τ + φd1)] (where we have set �d1 = 1) and vanishing
D2, we have ξ = e−iτ , and the F coefficients are shown
in (B9). This leads to

〈x̂m〉 = x0(2(k0 〈N̂a〉 + d1a)[1 − cos(τ )]

+ d1ε[τ sin(τ + φd1) − sin(τ ) sin(φd1)]), (F10)

(�x̂m )2 = x2
0

(
1 + 4 k2

0 (�N̂a)2{1 − [2 − cos(τ )] cos(τ )}).
(F11)

The conditions that follow from the above analysis are that
2 x0 (k0 〈N̂a〉 + d1 a) � l , x0 d1 ε τ � l , and 2 x0 k0 �N̂a � l
such that the interaction Hamiltonian is still valid. We con-
clude that the restrictions on 〈N̂a〉 and �N̂a do not increase
with τ . Furthermore, the driving D1 does not affect the re-
striction on the standard deviation �N̂a as it does not change
its evolution.

c. Modulated coupling and modulated gravitational fields

Here we take the modulated coupling to be k(τ ) =
k0 cos(�k τ + φk ) and the gravitational field is D1(τ ) =
−d1[a + ε cos(�d1 τ + φd1)]. The F coefficients are then
given in (B10).

In the specific case that �d1 = �k =: �, we find

〈x̂m〉 = −2x0

{
d1a[cos(τ ) − 1] + 1

�2 − 1
[[cos(�τ ) − cos(τ )](d1ε cos(φd1) + k0 〈N̂a〉 cos(φk ))

− [sin(�τ ) − � sin(τ )](d1ε sin(φd1) + k0 〈N̂a〉 sin(φk ))]

}
, (F12)

(�x̂m )2 = x2
0

{
1 + k2

0 (�N̂a)2

(�2 − 1)2
[�2 + 3 + 2(cos[2(�τ + φk )] + cos(τ ){2 sin(2φk )[sin(�τ ) − � sin(τ )]

− 2 cos(2φk ) cos(�τ )} + � sin(τ ){2 sin(2φk ) cos(�τ ) + cos(2φk )[2 sin(�τ ) − � sin(τ )]}

+ cos2(τ ) cos(2φk ) + (� − 1) cos[(� + 1)τ ] − (� + 1) cos[(� − 1)τ ]) − (�2 − 1) cos(2τ )]

}
. (F13)

We found that the QFI was maximized for the choice φd1 = π/2 and φk = 0. With these values for the phases we find

〈x̂m〉 = − 2x0

[
d1a[cos(τ ) − 1] + 1

�2 − 1
([cos(�τ ) − cos(τ )]k0 〈N̂a〉 − [sin(�τ ) − � sin(τ )]d1ε)

]
, (F14)

(�x̂m )2 = x2
0

(
1 + 4k2

0 (�N̂a)2

(�2 − 1)2
[cos(τ ) − cos(�τ )]2

)
. (F15)

These expressions can be rewritten as

〈x̂m〉 = −2x0

{
d1a[cos(τ ) − 1] + 1

� + 1
sin(τ )d1ε

− 2

�2 − 1
sin

(
� − 1

2
τ

)[
sin

(
� + 1

2
τ

)
k0 〈N̂a〉 + cos

(
� + 1

2
τ

)
d1ε

]}
,

(�x̂m )2 = x2
0

[
1 + 16k2

0 (�N̂a)2

(�2 − 1)2
sin2

(
� − 1

2
τ

)
sin2

(
� + 1

2
τ

)]
. (F16)
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We find that the expectation value of the center of mass of the mechanics contains two terms where one oscillates with the
mechanical frequency 1 (induced by the stationary part of the gravitational field) and the other oscillates with an envelope of
beating frequency |� − 1|/2. The variance oscillates with the beating frequency.

By considering the fractional frequencies that cause the two subsystems to become separable at specific times τsep (see
Appendix D), we find that |�frac − 1|τsep/2 = |n1|π , and we find that the cavity and mechanical subsystems become separable
at half and full beating periods if n1 is odd and even, respectively. For the amplitude of the beating oscillation, we obtain the
proportionality factor

2

�2
frac − 1

= s2

2n1(s + n1)
. (F17)

We obtain the additional condition 〈N̂a〉 ,�N̂a � |l[n1(s + n1)]/(s2x0k0)|, which approximates 〈N̂a〉 ,�N̂a � l/(sx0k0) for
n1 = −1 and s � 1. For modulation and driving at the mechanical frequency with �d1 = �k = 1, we find

〈x̂m〉 = −x0{2d1a[cos(τ ) − 1]−[τ sin(τ )(d1ε cos(φd1) + k0 〈N̂a〉 cos(φk ))

+ [τ cos(τ ) − sin(τ )](d1ε sin(φd1) + k0 〈N̂a〉 sin(φk ))]}, (F18)

(�x̂m )2 = x2
0

(
1 + k2

0 (�N̂a)2{τ cos(φk ) sin(τ ) + [τ cos(τ ) − sin(τ )] sin(φk )}2), (F19)

which leads to the conditions 〈N̂a〉 ,�N̂a � l/(x0k0τ ) that have to be fulfilled in addition to the general conditions in the case of
resonant driving.

2. Modulated mechanical frequency and time-dependent
gravitational field

For the case where the mechanical frequency is being mod-
ulated on parametric resonance with D2(τ ) = d2 cos(2τ +
φd2) and time-dependent gravitational field D1(τ ) = −d1[a +
ε cos(�d1τ + φd1)], we find for the specific case of φd1 = 0
and φd2 = −π/2,

〈x̂m〉 = 2x0

[
(a d1 + k0 〈N̂a〉)

[
1 − ed2 τ cos(τ )

]

− d1ε

4 d2

(
1 − e−d2 τ

)[
d2 ed2 τ cos(τ ) − 2 sin(τ )

]]
,

(F20)

(�x̂m )2 = x2
0

(
cosh(2d2τ ) + sinh(2d2τ ) cos(2τ )

+ 4k2
0 (�N̂a)2[1 − cos(τ )ed2τ

]2)
. (F21)

We find that the amplitude of the oscillations increase ex-
ponentially due to the parametric driving. Then, the photon
number and standard deviation are restricted as 2x0k0 〈N̂a〉
(1 + ed2τ ) � l and 2x0k0�N̂a(1 + ed2τ ) � l .

We then plot the expectation value 〈x̂m〉 and the standard
deviation �x̂m as a function of time τ in Fig. 5. Figure 5(a)

shows 〈x̂m〉 and
√

〈x̂2
m〉 − 〈x̂m〉2 for undriven evolution, while

Figs. 5(b)–5(e) show the same quantities for resonant grav-
itational fields, a jointly resonantly modulated coupling and
gravitational field, jointly modulated coupling and gravita-
tional field at the fractional frequencies identified in Appendix
D, and jointly modulated mechanical frequency and gravita-
tional field, respectively.

APPENDIX G: PHONON NUMBER EVOLUTION

We saw in the main text that the QFI scales as τ 4 when
both the gravitational field and the optomechanical coupling

is modulated at resonance. Here we investigate what this in-
crease in sensitivity means in terms of the energy stored in the
system. Since N̂a = â†â commutes with the Hamiltonian, the
photon number stays constant at all times. The phonon num-
ber, however, changes as a result of the optical driving. We
here examine how the phonon number changes as a function
of time for the same cases as we considered in Appendix F.

When the mechanical element is cooled to the ground state,
the phonon number expectation value 〈N̂b(τ )〉 is given by the
expression [27]

〈N̂b(τ )〉 = (|α(τ )|2 + [�∗(τ ) �(τ ) + �(τ ) �∗(τ )] 〈N̂a〉
+ |�(τ )|2 〈

N̂2
a

〉 + |β(τ )|2 + |�(τ )|2, (G1)

where α(τ ) and β(τ ) are given in (B6) and where �(τ ) and
�(τ ) are defined in (F2).

We plot the phonon number in Fig. 6 according to the
same schemes we considered in Fig. 6. Figure 6(a) shows
〈N̂b〉 of an undriven optomechanical systems with a constant
optomechanical coupling, Fig. 6(b) shows 〈N̂b〉 for a reso-
nant gravitational field and constant coupling, Fig. 6(c) shows
〈N̂b〉 for a doubly resonant gravitational field and coupling,
Fig. 6(d) shows 〈N̂b〉 for when both the coupling and the
gravitational field are modulated at the fractional frequencies,
and finally, Fig. 6(e) shows 〈N̂b〉 for when the mechanical
frequency is modulated at twice the resonant frequency, along
with a resonantly modulated gravitational field.

We note from the plots that the phonon number behaves
similarly to the position expectation value and variance (see
Fig. 5). The phonon number increases monotonically for the
doubly resonant case, but returns to the ground-state once the
states disentangle. This occurs, for example, at τ = 10π when
the fractional frequency is �frac = 4/5, as can be seen from
Fig. 6(d). This means that one can achieve a sensitivity that
grows linearly in time while at the same time preventing a
build-up of energy in the system.
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FIG. 5. Plots showing the (dimensionless) expectation value and standard deviation of the mechanical position x̂m for an initially coherent
state of the optics, given (a) undriven evolution, (b) a constant coupling and resonant gravitational field, (c) a time-dependent coupling and
time-dependent gravitational field both modulated at resonance, (d) a time-dependent coupling and time-dependent gravitational field both
modulated at the fractional frequency �frac = 4/5, and finally (e) a time-dependent modulation of the mechanical frequency at parametric
resonance. In (d) we note that for this choice of frequency, the system disentangles at τ = 10π , which we observe as a periodical envelope of
the variance and standard deviation. For all cases, the standard deviation �x̂m remains smaller than 〈x̂m〉. The values |μc| = 10, k0 = 1, a = 1,
ε = 0.5, rT = 0, and the optimal phase choice have been used in all plots.

FIG. 6. Plots showing the phonon number 〈N̂b〉 for an initially coherent optical state and with the mechanical element in the ground state.
The plots show 〈N̂b〉 as a function of time for (a) undriven evolution, (b) a constant coupling and resonant gravitational field, (c) a time-
dependent coupling and time-dependent gravitational field, both modulated at resonance, (d) a time-dependent coupling and a time-dependent
gravitational field, both modulated at the fractional frequency �frac = 4/5, and (e) a time-dependent gravitational field at resonance and a
modulation of the mechanical frequency at parametric resonance. The values |μc| = 1, k0 = 1, a = 1, ε = 0.5, rT = 0, and the optimal phase
choice φd2 = −π/2 have been used in all plots.
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