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ABSTRACT
We study the time evolution of two coupled quantum harmonic oscillators interacting through nonlinear optomechanical-like Hamiltonians
that include cross-Kerr interactions. We employ techniques developed to decouple the time-evolution operator and obtain the analytical
solution for the time evolution of the system. We apply these results to obtain explicit expressions of a few quantities of interest. Our results
do not require approximations and therefore allow us to study the nature and implications of the full nonlinearity of the system. As a potential
application, we show that it is possible to greatly increase the population of phonons using a suitable combination of cubic and cross-Kerr
interactions.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5121397

I. INTRODUCTION
The understanding of the dynamics of quantum systems is paramount to deepen our understanding of the laws of Nature. Given an

arbitrary Hamiltonian, it is, in general, impossible to obtain a full and analytical expression for the time evolution of the system it describes.
Typically, approximations or ad hoc methods are required, leaving open the question of the existence of a general framework or set of tools to
address the problem systematically.

In recent years, specific techniques have been developed to tackle the problem for Gaussian states of bosonic systems interacting through
quadratic Hamiltonians.1–3 This has led to the development of a mathematical framework aimed at obtaining the full time evolution of the
system using the power of the covariance matrix formalism.4 Interestingly, these techniques do not apply to this class of states and trans-
formations only, but it can be generalized to arbitrary states and arbitrary Hamiltonians. This novel approach has led to very interesting
preliminary results, where complete and analytical solutions of the time evolution of the system were found for optomechanical-like Hamil-
tonians of arbitrary numbers of modes of light interacting with arbitrary numbers of mechanical resonators.5,6 This has allowed, for example,
for a quantitative analysis of the nonlinear character of an optomechanical system.7

In this work, we take another step forward and study the time evolution of a system of two bosonic mode interactions via an
optomechanical-like Hamiltonian with cross-Kerr terms. Such a Hamiltonian does not model a realistic optomechanical system since it
does not take into account external drive, loss or dissipation. However, this Hamiltonian can be used to model ideal quantum systems inter-
acting through nonlinear terms that can potentially be designed in realistic implementations where loss and decoherence can be (greatly)
reduced. Such systems might include optomechanical systems with appropriately tuned cross-Kerr terms,8 pulsed optomechanical systems
where the measurement times are comparable or smaller than decoherence times,9 vibrational modes of atoms trapped in periodic cavity field
potentials,10 as well as superconducting circuits that simulate (quadratic) optomechanical interactions.11

We are able to find an analytical solution to the time evolution which we use to compute the expectation value of relevant quantities as
a function of time, such as the number of “phonons” in the system, as well as the mixedness induced by the interaction in the state of the
resonator’s subsystem. We specialize our results to a few scenarios of interest, which model light–matter interaction, that can be exploited
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for sensing and gravimetry,12 as well as tests of fundamental physics.13 In addition, our results are connected to work aimed at finding
solutions to the evolution induced by cubic, or higher, order Hamiltonians that are entirely obtained as combinations of polynomial powers
of quadrature—or creation and annihilation—operators.14 Ultimately, our work can aid in deepening our understanding of the mathematical
framework of quantum mechanics, one of our two pillars of modern science.

The paper is structured as follows: In Sec. II, we introduce the general framework necessary for our work. In Sec. III, we decouple the time
evolution of the system for the general case. In Sec. IV, we specialize to scenarios of more practical interest. Finally, we briefly give concluding
remarks in Sec. VI.

II. GENERAL FRAMEWORK
We start by introducing the Hamiltonian and the tools necessary to this work. More details about the computations are left to

Appendixes A–D. Extensive introduction to the frameworks mentioned below is left to the literature.

A. Hamiltonian
In this work, we consider the general Hamiltonian Ĥ = Ĥ0(t) + ĤI(t), where Ĥ0 ∶= h̵ωc(t)â†â + h̵ωm b̂†b̂ is the potentially time-dependent

free Hamiltonian and

ĤI(t) = h̵ g(+)
1 (t) â†â B̂+ + h̵ g(−)

1 (t) â†â B̂− + h̵ g(+)
2 (t) â†â B̂(2)

+ + h̵ g(−)
2 (t) â†â B̂(2)

− + 2 h̵ g′2(t) â†â b̂†b̂, (1)

and we have defined B̂+ ∶= b̂† + b̂, B̂− ∶= i(b̂†
− b̂), B̂(2)

+ ∶= b̂†2 + b̂2, and B̂(2)
−
∶= i(b̂†2

− b̂2) for notational convenience. The operators B̂± corre-
spond to the quadrature operators, while the operators B̂(2)

±
are directly related to the square of the quadrature operators (modulo an additional

term proportional to b̂† b̂). We choose to retain our notation because it is more natural to the techniques used in this work. An advantage of
expression (1) is that it allows us to consider each cross-Kerr term independently from each other.

The Hamiltonian (1) is a formal extension of well-known Hamiltonians that can model light and matter interaction, e.g., optomechanical
Hamiltonians.15 The main difference is that we consider an “ideal” case here, namely, we do not include an external (laser) drive and we
assume that the system is lossless and noiseless. In this sense, the system considered here does not model realistic optomechanical systems.
Nevertheless, it provides a platform for studying cross-Kerr interactions, which can be of practical interest with the advance of technological
control.

B. Dimensionless dynamics
To understand which are the relevant dimensionless parameters that govern the dynamics of the system, we introduce dimensionless

quantities and rescale the Hamiltonian (1). This is achieved rescaling all frequencies and time by the reference frequency ωm. Therefore, the
laboratory time t will become τ = ωmt, where τ is the new dimensionless time. The couplings in the Hamiltonian are subsequently relabeled
as follows:

g̃(±)
1 (τ) = g(±)

1 (ωm t)/ωm, g̃(±)
2 (τ) = g(±)

2 (tωm)/ωm, g̃′2(τ) = g′2(tωm)/ωm. (2)

We also rescale the optical frequency to ω̃c(τ) ∶= ωc(ωm t)/ωm and the Hamiltonian by h̵. This implies that we use the rescaled Hamiltonian
Ĥ(τ) = Ĥ0(τ) + ĤI(τ), where we have Ĥ0(τ) ∶= ω̃c(τ) â†â + b̂†b̂ and

ĤI(τ) = g̃(+)
1 (τ) â†â B̂+ + g̃(−)

1 (τ) â†â B̂− + 2 g̃′2(τ) â†â b̂†b̂ + g̃(+)
2 (τ) â†â B̂(2)

+ + g̃(−)
2 (τ) â†â B̂(2)

− . (3)

With this dimensionless Hamiltonian, it will be easier to understand the interplay between the different scales of the problem and to perform
approximations.

C. Solving the dynamics
Here, we outline the tools needed to solve the dynamics generated by (3). We refer the reader to Appendixes A and B for detailed

calculations.
The time-evolution operator of a quantum system with time dependent Hamiltonian Ĥ(t) reads

Û(t) =
←

T exp[−
i
h̵∫

t

0
dt′ Ĥ(t′)], (4)

where
←

T is the time ordering operator.3 This expression simplifies to U(t) = exp[− i
̵h Ĥ t] when the Hamiltonian Ĥ is time independent.

However, we are interested in Hamiltonians with time dependent parameters.
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Any Hamiltonian can be cast in the form Ĥ(t) = ∑ nh̵gn(t)Ĝn, where the Ĝn are time-independent Hermitian operators, the gn(t) are
time-dependent real functions, and the choice of Ĝn is not unique.

In general, one aims to recast (4) in the form

Û(t) =∏
n

Ûn(t), (5)

where we have defined Ûn ∶= exp[−iFn(t)Ĝn] and the real functions Fn(t) are, in general, time dependent. If such an expression exists, we say
that the time-evolution operator has been decoupled. The functions Fn(t) can be found using the techniques developed in the literature3 and
are determined solely by the parameters of the Hamiltonian (An alternative approach was also attempted in a related approach.16). The order
of the operators in (5) is not unique. A different order will change the form of the functions Fn(t) but not the expectation value of measurable
quantities. A more detailed outline of these techniques can be found in Appendix A.

D. Initial state
The last ingredient in this work is the choice of the initial state of the system. We assume that the optical mode is initially in a coherent

state ∣μc⟩, while the mechanical is in a thermal state ρ̂m(T). These states are defined by â∣μc⟩ = μc∣μc⟩ and ρ̂m(T) = ∑n
tanh2n r
cosh2 r ∣n⟩⟨n∣, where the

squeezing parameter r is related to the temperature T by the expression tanh r = exp[−
̵h ωm

2 kB T ].
Therefore, the initial state ρ̂(0) reads

ρ̂(0) = ∣μc⟩⟨μc∣ ⊗ ρ̂m(T). (6)

We choose to introduce Na(0) = ∣μ∣2 and Nb(0) = sinh2r as the initial number of excitation of modes â and b̂, respectively. This state is a good
approximation for the initial state of realistic systems, i.e., of optomechanical systems.15

III. DECOUPLING OF A NONLINEAR TIME-DEPENDENT OPTOMECHANICAL CROSS-KERR HAMILTONIAN
The first aim of this work is to obtain an analytical solution to the decoupled time-evolution operator (5), given our Hamiltonian (3).

Techniques exist already that can be used to tackle the decoupling of time evolution operators in the way that is suitable for us.3 These are the
techniques we will employ here.

A. Decoupling algebra of the nonlinear Hamiltonian
Decoupling of the Hamiltonian (3) can be done using a choice of the Hermitian operators Ĝn (see Appendix A).
The first step is to write

Û(τ) = e−i ∫
τ

0 dτ′ω̃c(τ′)â† â e−i θ̂2 b̂† b̂ ÛI(τ), (7)

where we have introduced θ̂2 = θ̂2(â† â) ∶= τ + 2 ∫
τ

0 dτ′ g̃′2(τ′) â†â for notational convenience. Note that θ̂2 is a time-dependent operator-
function of the Hermitian operator â†â. We can think of ÛI(τ) as the time evolution operator of the interaction picture.

We now need to consider the operator ÛI(τ) ∶=
←

T exp[− i
̵h∫

τ
0 ĤI(τ)] induced by the Hamiltonian ĤI(τ) = Ĥsq(τ) + ĤOM(τ), where

Ĥsq(τ) ∶= â†â [g̃(+)
2 (τ) cos(2 θ̂2) − g̃(−)

2 (τ) sin(2 θ̂2)] B̂(2)
+ + â†â [g̃(+)

2 (τ) sin(2 θ̂2) + g̃(−)
2 (τ) cos(2 θ̂2)] B̂(2)

− ,

ĤOM(τ) ∶= â†â [g̃(+)
1 (τ) cos(θ̂2) − g̃(−)

1 (τ) sin(θ̂2)] B̂+ + â†â [g̃(+)
1 (τ) sin(θ̂2) + g̃(−)

1 (τ) cos(θ̂2)] B̂−. (8)

We then split the evolution as ÛI(τ) = Ûsq(τ)ÛOM(τ), where we have defined

Ûsq ∶=
←

T exp[−
i
h̵∫

τ

0
dτ′ Ĥsq(τ′)],

ÛOM ∶=
←

T exp[−
i
h̵∫

τ

0
dτ′ Û†

sq ĤOM(τ′) Ûsq]. (9)

We need to supplement this ansatz with a second one, namely, with the action of the two-mode squeezing-like operator Ûsq on the operators
b̂ and b̂†. We have

Û†
sq b̂ Ûsq = α̂ b̂ + β̂ b̂†, (10)
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where α̂ = α̂(â†â) and β̂ = β̂(â†â) are the Bogoliubov coefficients. These coefficients are time-dependent functions of the operator â†â. They
satisfy the Bogoliubov identities α̂ α̂†

− β̂ β̂†
= 𝟙 and α̂ β̂†

− β̂ α̂†
= 0.

This allows us to obtain

Û†
sq ĤOM(τ) Ûsq = â†â R̂[g̃1(τ) Ê2 (α̂† + β̂†)] B̂+ − i â†â Î[g̃1(τ) Ê2 (α̂†

− β̂†)] B̂−, (11)

where we have defined Ê2 = Ê2(â†â) ∶= cos(θ̂2) + i sin(θ̂2), the coupling g̃1(τ) ∶= g̃(+)
1 (τ) + i g̃(−)

1 (τ) and R(Ô) ∶= 1
2 [Ô + Ô†

] for convenience of
notation.

Given all of the above, we can finally obtain

Û(τ) = e−i[∫
τ

0 dτ′ω̃c(τ′)â† â−F̂(2)(â† â)2+θ̂2 b̂† b̂]Ûsqe−i∫
τ

0 dτ′ â† âR[g̃1(τ′)Ê2(α̂†+β̂†)]B̂+ ei∫
τ

0 dτ′ â† âI[g̃1(τ′)Ê2(α̂†−β̂†)]B̂− , (12)

which is the main expression for the decoupled time-evolution operator in this work.
To complete our main result (12), we require the expression of F̂(2) and of the Bogoliubov coefficients α̂ and β̂. The expression for F̂(2) is

readily found as

F̂(2)
= 2∫

τ

0
dτ′ I[g̃1(τ′) Ê2 (α̂†

− β̂†)] ∫
τ′

0
dτ″ R[g̃1(τ″) Ê2 (α̂† + β̂†)]. (13)

This leaves us with the task of computing the Bogoliubov coefficients α̂ and β̂ in order to obtain a fully analytical understanding of our
system.

B. The action of the single-mode squeezing operator
We have noted that, in general, the action of Ûsq on the operators b̂ has the form (10). Ideally, we would like to have an analytical

expression for the functional form of α̂ and β̂ in terms of â†â, and of the couplings of the system. Although this is not possible in general,17 we
proceed to construct two uncoupled differential equations that relate the derivatives of α̂ and β̂ to the couplings g̃±2 (τ) and g̃′2(τ).

The expression for the single mode squeezing is given in (10). In Appendix B, we show that

α̂ = p̂11,

β̂ = −i â†â∫
τ

0
dτ′ χ̃2(τ′) e2 i (ϕ2+θ̂2) p̂†

11, (14)

where we have introduced the modulus χ̃2(τ) ∶=
√

g̃(+)2
2 (τ) + g̃(−)2

2 (τ), the angle ϕ2 through tan(2ϕ2) = g̃(−)
2 /g̃

(+)
2 , and the operator-function

p̂11 = p̂11(∫
τ

0 dτ′ χ̃2(τ′)), which satisfies the second-order differential equation

χ̃2 ¨̂p11 + i
d

dτ
(ϕ2 + θ̂2) ˙̂p11 − χ̃2 (a†â)2 p̂11 = 0. (15)

The derivative here is with respect to y(τ) ∶= ∫
τ

0 dτ′χ̃2(τ′). These differential equations have to be supplemented by the initial conditions
p̂11(0) = 𝟙 and ˙̂p11(0) = 0.

The evolution of the initial state ρ̂(0) is obtained by the usual Heisenberg equation ρ̂(τ) = Û(τ) ρ̂(0) Û†(τ). The full expression is not
illuminating and we do not print it here. However, we can ask what is the expression for the time evolution of the mode operators â and b̂.
These expressions allow us, in principle, to compute the expectation value of most quantities of interest.

We define â(τ) ∶= Û†(τ)âÛ(τ) and b̂(τ) ∶= Û†(τ) b̂ Û(τ), and, using expression (12), we find

b̂(τ) = Ê†
2{α̂ b̂ + β̂ b̂†

− i â†â α̂ Î + i â†â β̂ Î†}. (16)

Here, Î = Î(â† â) ∶= ∫
τ

0 dτ′[g̃1(τ′) Ê2 α̂† + g̃∗1 (τ′) Ê†
2 β̂] for notational convenience. The expression for â(τ) depends on the explicit functional

form of F̂(2), I[g̃1(τ′) Ê2 (α̂†
− β̂†)], and R[g̃1(τ″) Ê2 (α̂† + β̂†)] in terms of â†â. This can be computed once the scenario of interest has been

determined.
The number Nb(τ) ∶= ⟨Û†(τ) b̂† b̂ Û(τ)⟩ of “phonons” at any time τ can be computed using (16), and it reads

Nb(τ) = Nb(0) + (1 + 2Nb(0))e−∣μ∣
2

∑
n

∣μ∣2n

n!
∣βn∣

2 + e−∣μ∣
2

∑
n=1

n∣μ∣2n

(n − 1)!
[∣In∣

2 + 2∣βn∣
2
∣In∣

2
− 2R(αnβ∗n I2

n)]. (17)

In the expression of (17), the subscript n means within each operator we need to replace n→ â†â.
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IV. APPLICATIONS: TIME EVOLUTION WITH CROSS-KERR TERMS
We are now in the position to study the time evolution induced by the Hamiltonian (12) within some specific cross-Kerr scenarios. We

will be able to obtain some analytical expressions for meaningful quantities that encode the full nonlinear character of the system.

A. Cross-Kerr without squeezing
Here, we start with the scenario where g̃(±)

2 (τ) = χ̃2(τ) = 0. This implies that the only cross-Kerr term that does not vanish is the term
g̃′2(τ) â†â b̂†b̂ in (3). Since χ̃2(τ) = 0, we can immediately see that p̂11 = 𝟙 and therefore α̂ = 𝟙 and β̂ = 0. Some algebra allows us to find the
expression for (12) in this case, which reads

Û(t) = e−i [∫
τ

0 dτ′ω̃c(τ′)â† â−F̂(2) (â† â )2+θ̂2 b̂† b̂] e−i ∫
τ

0 dτ′ â† â [g̃(+)
1 (τ′) cos(θ̂2)−g̃(−)

1 (τ′) sin(θ̂2)] B̂+ ei ∫
τ

0 dτ′ â† â [g̃(+)
1 (τ′) sin(θ̂2)+g̃(−)

1 (τ′) cos(θ̂2)] B̂− , (18)

where F̂(2) reads

F̂(2)
= 2∫

τ

0
dτ′ [g̃(+)

1 (τ′) sin(θ̂2) + g̃(−)
1 (τ′) cos(θ̂2)]∫

τ′

0
dτ″ [g̃(+)

1 (τ″) cos(θ̂2) − g̃(−)
1 (τ″) sin(θ̂2)]. (19)

Note that, for g̃′2(τ) = g̃(−)
1 = 0, we recover the results found in the literature, as expected.5

Expression (18) allows us to find

b̂(τ) = e−i θ̂2 [b̂ − i â†â∫
τ

0
dτ′ g̃1(τ′) ei θ̂2], (20)

where we have omitted the expression for â(τ), which can be computed but is not illuminating.
The change ΔNb(τ) ∶= Nb(τ) −Nb(0) in the number of phonons, given our initial state (6), reads

ΔNb(τ) = ∣μ∣2 e−∣μ∣
2

∑
n

(n + 1) ∣μ∣2 n

n!
∣In+1∣

2, (21)

where In = ∫
τ

0 dτ′g̃1(τ′) exp[i (τ + 2 n ∫
τ

0 dτ′ g̃′2(τ′))] for this case.
Finally, we can also compute the mixedness of the reduced state. The calculations can be found in Appendix D. Lengthy algebra, and the

use of a similar approach developed in the literature,6 allows us to find

SN (ρ̂m(τ)) = 1 − e−2 ∣μ∣2
∑
n,n′

∣μ∣2 n+2 n′

n! n′!

exp[− ∣Δnn′ ∣
2

cosh rT
]

cosh rT
, (22)

where we have defined Δnn′ ∶= ∫
τ

0 dτ′ g̃1(τ′)(n ei θ2,n(τ′)
− n′ eθ2,n′ (τ

′)
) and θ2,n(τ) ∶= τ + 2 i n ∫

τ
0 dτ″ g̃′2(τ″) for convenience of presentation. It

is easy to find the result for zero temperature: it is sufficient to set rT = 0 in (22). Note that when Δnn′ = 0, i.e., g̃1(τ) = 0, we obtain
SN (ρ̂m(τ)) = SN (ρ̂m(0)) as expected.

B. Cross-Kerr with squeezing and without diagonal term
Here, we consider the simpler scenario when g̃′2(τ) = 0. This implies that the cross-Kerr term that vanishes is g̃′2(τ) â†â b̂†b̂ in (12). Since

g̃′2(τ) = 0, the main differential equation (15) reads

χ̃2(τ) ¨̂p11 − i (1 +
d

dτ
ϕ2) ˙̂p11 − χ̃2(τ) (â†â)2 p̂11 = 0. (23)

This case requires numerical integration of the differential equation above, since there is no analytical solution for a general form of the
coupling χ̃2(τ). A numerical approach can then enable the use of (12).

C. Cross-Kerr with constant squeezing and constant diagonal term
In this final case, we consider g̃′2(τ) = g̃′2 and g̃2(τ) ∶= g̃(+)

2 (τ) + i g̃(−)
2 (τ) = g̃2 constant. This implies that also χ̃2 and ϕ2 are constant. In

turn, this means that (15) reads

χ̃2 ¨̂p11 − i (1 + 2 g̃′2 â†â) ˙̂p11 − χ̃2 (â†â)2 p̂11 = 0, (24)
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given that θ̂2 = (1 + 2 g̃′2 â†â) τ in this scenario. This allows us to find the solution

p̂11(τ) = ei K̂ τ
[cos(Λ̂ τ) − i

K̂
Λ̂

sin(Λ̂ τ)], (25)

where we have introduced K̂ ∶= 1 + 2 g̃′2 â†â and Λ̂ ∶=
√

K̂2 − 4 χ̃2
2 (â†â)2 for convenience of presentation. Note that Λ̂−1 sin(Λ̂ τ) is a well-

defined operator, since it is the short hand notation for the expression Λ̂−1 sin(Λ̂ τ) = [1 − (Λ̂ τ)2
/3! + (Λ̂ τ)4

/5! − . . .] τ. Also note that
θ̂2 = K̂ τ in our present case. Finally, note that if we were to set χ̃2 = 0, we would have Λ̂ = K̂ and we can immediately see that p̂11(τ) = 𝟙,
as expected from our results above.

Recalling that p̂11(τ) in (25) gives us one of the Bogoliubov coefficients directly, i.e., α̂ = p̂11(τ), we can easily find the other coefficient by
employing (14), which gives

α̂ = ei K̂ τ
[cos(Λ̂ τ) − i

K̂
Λ̂

sin(Λ̂ τ)],

β̂ = −2 i χ̃2
â†â
Λ̂

e2 i ϕ2 ei K̂ τ sin(Λ̂ τ). (26)

It is immediate to check that α̂ α̂†
− β̂ β̂†

= 𝟙.
This allows us to obtain an analytical expression for the time evolution operator (12). We first obtain F̂(2), which reads (13), together with

an expression for R[g̃1(τ) Ê2 (α̂† + β̂†)] and I[g̃1(τ) Ê2 (α̂†
− β̂†)], whose full expressions can be found in (B16).

We do not need an analytical expression for the decoupled form of the operator Ûsq for this case, since we have found the Bogoliubov
coefficients (26).

This means that our time evolution operator (12) has the explicit expression (B17), which can be specialized to any desired functional
expression of the g̃1 drive.

D. Resonant selective squeezing
Here, we apply our results to a specific case of potential interest for future implementations of interactions of light and matter. We

assume that g̃′2(τ) = g̃′2 is constant and g̃(−)
2 (τ) = 0 and that g̃(+)

2 (τ) = g̃2 = χ̃2 is constant. This implies that ϕ2 = 0. We also assume that g̃1(τ) = χ̃1
constant.

The first observation to make is that the squeezing operation induced by Ĥsq = χ̃1 â†â B̂+ + (1 + 2 g̃′2 â†â) b̂†b̂ + χ̃2 â†â B̂(2)
+ can cast in

matrix form. This can be done after tracing over the photonic degrees of freedom, which gives us a collection of operators induced by
Ĥsq,n = n χ̃1 B̂+ + (1 + 2 n g̃′2) b̂†b̂ + n χ̃2 B̂(2)

+ . This allows us to study the eigenvalues of the Hamiltonian matrix Hsq,n that represents Ĥsq,n and
is defined by Ĥsq,n =

1
2 X

† Hsq,n X, where X = (b̂, b̂†)Tp. A simple calculation tells us that the eigenvalues λn,± of the Hamiltonian matrix
Hsq,n read

λn,± = 1 + 2 n g̃′2 ± 2 n χ̃2. (27)

We now note that Λn =
√

K2
n − 4 χ̃2

2 n2 =
√
λn,+ λn,−. Therefore, for those values of n for whom λn,± < 0, we have that Λn → iΛn

= i
√

4 χ̃2
2 n2 − K2

n and the Bogoliubov coefficients (26), for such n, read

αn = ei Kn τ [cosh(Λn τ) − i
Kn

Λn
sinh(Λn τ)],

βn = −2 i χ̃2
n
Λn

ei Kn τ sinh(Λn τ). (28)

Note that the condition λn,± < 0, therefore, depends on the relative magnitude of the couplings with respect to n, and crucially on their sign.
If there exists a particular n = n∗ ∈ N such that Λn∗ =

√
K2

n∗ − 4 χ̃2
2 n2
∗
= 0, (28) immediately gives us

αn∗ = ei K̂ τ
[1 − 2 i χ̃2 n∗ τ],

βn∗ = −2 i χ̃2 n∗ ei K̂ τ τ. (29)

We now note the following: when χ̃2 > g̃′2 the Bogoliubov coefficients (28) apply for each n > 1/(2 (χ̃2 − g̃′2)). In case χ̃2 < g̃′2, there does not
exist any n ∈ N such that the Bogoliubov coefficients have the behavior (28).
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If it is possible to have χ̃2 > g̃′2, this allows us immediately to compute In, and therefore, the change in phononic population ΔNb(τ)
through the general expression (17) reads

ΔNb(τ) = 4 χ̃2
2 (1 + 2 Nb(0)) e−∣μ∣

2 +∞

∑
n=1

n ∣μ∣2 n

(n − 1)!
sh2

n

Λ2
n

+ χ̃2
1 e−∣μ∣

2

∑
n=1

n ∣μ∣2 n

(n − 1)!
sh2

n + (Kn ∓ 2 χ̃2 n )2 (chn − 1)2

Λ2
n

, (30)

where chn ∶= cosh(Λn τ) and shn ∶= sinh(Λn τ) for simplicity of presentation. Here, the ∓ sign corresponds to our choice g̃1 = e
i
4 (π∓π) χ̃1, where

χ̃1 ≥ 0.
It is clear from (30) that, when τ ≫ 1, the contributions in the sums that for which n give one λn,± < 0 grow exponentially with time.

Each contribution grows as ∼ exp[Λnτ], and it is dampened by the ∣μ∣n/(n − 1)! in front.

V. CONSIDERATIONS
Our results can be applied to any ideal optomechanical system with arbitrary cross-Kerr interaction, which includes as a special case a

system of two-harmonic oscillators with only cross-Kerr interactions and no cubic term [that is when g̃(±)
1 (τ) = 0].

We would like to make here a few considerations on our results in order to give a context of their applicability and overview of their
scope.

(i) First, our results are “general,” in the sense that they apply regardless of the specific implementation to be used or the physical and
experimental limits on the parameter regimes. In this sense, our work can motivate pushing the limits of studies of existing systems
and expanding beyond traditional boundaries on their parameter regimes, since we have provided analytical tools to investigate new
areas in the parameter space.

(ii) Our results are “fully nonlinear,” which means that the full nonlinearity of the system is taken into account and is responsible for
the final results. Linear responses are easy to find and can be obtained by simply setting ∣g̃2∣ ≪ 1 and g̃′2 ≪ 1 and retaining terms to
first order in these parameters. This approach would be equivalent to employing perturbation theory, and the results would provide
nothing new with respect of what has been already studied in the literature in such weak cross-Kerr regimes.

(iii) It might not be possible, at least at the moment, to engineer Hamiltonians of the general form (3). However, our Hamiltonian covers all
possible combinations of quartic cross-Kerr terms, which also provides further insight into the algebraic structure of linear operators
that act on the Hilbert space.

(iv) Our initial Hamiltonian (3) models an ideal system, namely, a system that has no losses and no decoherence. To include such
phenomena, one would need to modify the Heisenberg equation d

dt ρ̂ =
i
̵h [Ĥ, ρ̂] to the master equation d

dt ρ̂ =
i
̵h [Ĥ, ρ̂] + L̂Dρ̂, where

L̂D is an operator that implements these important processes. That decoherence is important in most systems, such as optome-
chanical ones,15, and there are standard techniques to find and work with master equations such as the one just mentioned.15

In the current study, our goal here was to give the first steps into understanding how the full nonlinear aspects of the ideal
cross-Kerr scenario affect important quantities, such as the number of phonons or the mixedness of the subsystems. Potential
applications of our results can be to studies that show that cross-Kerr terms can be used to greatly reduce decoherence itself,8 as
well as studies that show that simulations of (quadratic) optomechanical systems in superconducting circuits can be performed
in low-decoherence regimes.11 We leave it to further work to include decoherence and dissipation to the approach presented
here.

VI. CONCLUSIONS
We have studied the time evolution induced by a class of Hamiltonians of two interacting quantum harmonic oscillators that include

nonlinear optomechanical-like and cross-Kerr interactions, without losses and without decoherence. We employed tools developed to obtain
an analytical expression for the time-evolution operator, which, in turn, allowed us to explicitly compute quantities of interest. These include
the number expectation value of the mechanical resonator—that is, the number of phonons in the system—and the mixedness of the state of
the resonator. Our results are free from approximations and therefore encode the full nonlinear character of the interaction.

These techniques, and the control gained by employing them, can have many applications. For example, similar decoupling techniques
have been recently applied to the analysis of correlations within the tripartite coupled bosonic system interacting with quadratic Hamil-
tonians,18 which prompted and facilitated a successful experiment investigating the resulting entanglement between the bosonic modes.19

Among other possible applications of our tools, there is quantum control,20 understanding of the interplay between the linear and nonlin-
ear characters of quantum mechanical systems7 and extending current studies of hidden quantum correlations in existing electromechanical
measurements.21

Finally, we have also identified parameter regimes that allow for a potentially exponential increase in the number of phonons and there-
fore in the mixedness induced between the two subsystems. This feature can have important applications in the quest of demonstrating
quantum aspects of macroscopic systems.15,22
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APPENDIX A: DECOUPLING OF TECHNIQUES FOR TIME EVOLUTION

In this appendix, we outline the general decoupling techniques that we shall be using throughout this work to find a decoupled time-
evolution operator generated by the Hamiltonian in (3). These techniques have been developed in previous work.1,3

1. Decoupling for arbitrary Hamiltonians
The time evolution operator Û(t) induced by a Hamiltonian Ĥ(t) reads

Û(t) =
←

T exp[−
i
h̵∫

t

0
dt′H(t′)], (A1)

where
←

T is the time-ordering operator.
Any Hamiltonian Ĥ(t) can be cast in the form Ĥ(t) = ∑ nh̵gn(t)Ĝn, where the Ĝn are time independent, Hermitian operators and the

gn(t) are time dependent functions. The choice of Ĝn is not unique.
We say that the time evolution operator (A1) has been decoupled if it is possible to obtain the expression

Û(t) =∏
n

Ûn(t), (A2)

where we have defined Ûn ∶= exp[−iFn(t)Ĝn] and the real, time-dependent functions Fn(t) can be obtained as explained below. It has been
shown that it is always possible to obtain the decoupling in terms of symplectic matrices when the Hamiltonian is quadratic in the bosonic
operators,3 which can be of great help for practical computations.

The functions Fn(t) are uniquely determined by the coupled, nonlinear, first order differential equations

1
h̵

Ĥ = Ḟ1 Ĝ1 + Ḟ2 Û1 Ĝ2 Û†
1 + Ḟ3 Û1 Û2 Ĝ3 Û†

2 Û†
1 + Ḟ4 Û1 Û2 Û3 Ĝ4 Û†

3 Û†
2 Û†

1 + . . . . (A3)

This is the general method we have been employed in this work and in previous related one.
Here, we find it convenient to consider the formally infinite Lie algebra generated by the following set of Hermitian basis operators,

(â†â)N , (â†â)N b̂†b̂,

(â†â)N B̂+, (â†â)N B̂−,

(â†â)N B̂(2)
+ , (â†â)N B̂(2)

− , (A4)

which are the maximal extension of those that generate the Hamiltonian (3). Note that there are an infinite of these operators, i.e., there are
operators for all N ∈ N.

2. Decoupling for quadratic Hamiltonians: Continuous variables and covariance matrix formalism
If the Hamiltonian is quadratic in the mode operators, the techniques described in Appendix A 1 have a more powerful representation.

Here, we proceed to describe these techniques.
In quantum mechanics, the initial state ρ̂I of a system of N bosonic modes with operators {ân, â†

n} evolves to a final state ρ̂ f through
the standard von Neumann equation ρ̂ f = Û ρ̂I Û†, where U implements the transformation of interest, such as time evolution. If the state ρ̂
is Gaussian and the Hamiltonian H is quadratic in the operators, it is convenient to introduce the vector X̂ = (â1, . . . , âN , â†

1 , . . . , â†
N )Tp, the

vector of first moments d ∶= ⟨X̂⟩ and the covariance matrix σ defined by σnm ∶= ⟨{X̂n, X̂†
m}⟩ − 2⟨X̂n⟩⟨X̂†

m⟩, where {⋅, ⋅} stands for anticommu-
tator and all expectation values of an operator Â are defined by ⟨Â⟩ ∶= Tr(Â ρ̂). In this language, the canonical commutation relations read
[X̂n, X̂†

m] = iΩnm, where the 2N × 2N matrix Ω is known as the symplectic form.4 We then note that, while arbitrary states of bosonic modes
are, in general, characterized by an infinite amount of degrees of freedom, a Gaussian state is uniquely determined by its first and sec-
ond moments, dn and σnm, respectively.4 Furthermore, quadratic, i.e., linear, unitary transformations, such as Bogoliubov transformations,
preserve the Gaussian character of the Gaussian state and can always be represented by a 2N × 2N symplectic matrix S that preserves the
symplectic form, i.e., S†Ω S = Ω.
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The von Neumann equation can be translated in this language to the simple equation σ f = S σIS† for the second moments and d f = Sdi
for the first moments, which shifts the problem of usually untreatable operator algebra to simple 2N × 2N matrix multiplication. Finally,
Williamson’s theorem guarantees that any 2N × 2N Hermitian matrix, such as the covariance matrix σ, can be decomposed as σ = S†ν⊕S,
where S is an appropriate symplectic matrix, the diagonal matrix ν⊕ = diag(ν1, . . . , νN , ν1, . . . , νN ) is known as the Williamson form of the
state and νn ∶= coth( 2 ̵h ωn

kB T ) ≥ 1 are the symplectic eigenvalues of the state.23

Williamson’s form ν⊕ contains information about the local and global mixedness of the state of the system.4 The state is pure when
νn = 1 for all n and is mixed otherwise. As an example, the thermal state σth of a N-mode bosonic system is simply given by its Williamson
form, i.e., σth = ν⊕.

The time evolution operator has a symplectic representation S(t) =
←

T exp[Ω ∫
t

0 dt′H(t′)], where the matrix H is defined through
Ĥ = ̵h2 X

† H X, and the decoupled ansatz (A2) has the form

S =
N (2N+1)

∏
n=1

Sn, (A5)

where we have introduced the matrices Sn. ∶= exp[Fn(t)Ω Gn] defined Gn, which are obtained from Ĝn =
1
2 X

† Gn X, and the real time-
dependent functions Fn(t) that are the same as they would be obtained with the technique above.

The real, time dependent functions Fn(τ) can be obtained by solving the following system of coupled nonlinear first order differential
equations:

H = Ḟ1 G1 + Ḟ2 S†
1 G2 S1 + Ḟ3 S†

1 S†
2 G3 S2 S1 + Ḟ4 S†

1 S†
2 S†

3 G4 S3 S2 S1 + . . . . (A6)

This is the matrix version of the operator differential equations (A3) for quadratic Hamiltonians, which reduces the problem of operator
algebra to matrix multiplication.

APPENDIX B: DECOUPLING OF THE SQUEEZING HAMILTONIAN

Here, we employ the techniques of Appendix A to decouple the operator Ûsq =
←

T exp[− i
̵h∫

τ
0 dτ′ Ĥsq(τ′)] induced by the squeezing

Hamiltonian Ĥsq(τ), which we reprint here

Ĥsq(τ) ∶= â†â [g̃(+)
2 (τ) cos(2 θ̂2) − g̃(−)

2 (τ) sin(2 θ̂2)] B̂(2)
+ + â†â [g̃(+)

2 (τ) sin(2 θ̂2) + g̃(−)
2 (τ) cos(2 θ̂2)] B̂(2)

− . (B1)

1. Preliminaries
We start by defining X ∶= (b̂, b̂†)Tp an noting that we can write

X′ = Û†
sq X Ûsq = (

Û†
sq b̂ Ûsq

Û†
sq b̂† Ûsq

) = Ssq(τ)X, (B2)

where the 2 × 2 symplectic matrix Ssq(τ) is the symplectic representation of Ûsq and satisfies S†
sq(τ)Ω Ssq(τ) = Ω. Here, Ω = diag(−i, i) is the

symplectic form for one mode. The matrix Ssq(τ), therefore, has the expression Ssq(τ) =
←

T exp[Ω ∫
τ

0 dτ′Hsq(τ′)], where Hsq(τ) is obtained
from Ĥsq =

1
2 X

† H̃sq X, and it has the explicit form

H̃sq = 2 â†â
⎛

⎝

0 g̃2(τ) e2 i θ̂2

g̃∗2 (τ) e−2 i θ̂2 0

⎞

⎠
. (B3)

Here, we have defined g̃2(τ) = χ̃2(τ) exp[2 iϕ2] ∶= g̃(+)
2 (τ) + i g̃(−)

2 (τ), and therefore, χ̃2(τ) =
√

g̃(+)2
2 (τ) + g̃(−)2

2 (τ) ≥ 0 and also
tan(2ϕ2) = g̃(−)

2 /g̃
(+)
2 .

Given the above, it follows that through simple algebra, we can obtain

Ssq(τ) =
←

T exp
⎡
⎢
⎢
⎢
⎢
⎣

−2 i â†â∫
τ

0
dτ′ χ̃2(τ′)

⎛

⎝

0 e2 i (ϕ2+θ̂2)

−e−2 i (ϕ2+θ̂2) 0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (B4)
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2. Solving the matrix time-ordered exponential
Here, we wish to find a formal expression for (B4). We start by noticing that, if we wrote down the time ordered exponential

Ssq(τ) ∶=
←

T exp[−i â†â∫
τ

0 dτ′K(τ′)] in terms of its definition, we would obtain

Ssq(τ) =
←

T exp
⎡
⎢
⎢
⎢
⎢
⎣

−2 iâ†â∫
τ

0
dτ′χ̃2(τ′)

⎛

⎝

0 e2 i(ϕ2+θ̂2)

−e−2 i(ϕ2+θ̂2) 0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= P − iâ†â∫
τ

0
dτ′K(τ′)P(τ′), (B5)

where the matrix K(τ) is defined as

K(τ) ∶= 2 χ̃2(τ)
⎛

⎝

0 e2 i (ϕ2+θ̂2)

−e−2 i (ϕ2+θ̂2) 0

⎞

⎠
, (B6)

and the diagonal matrix P(τ) is the object that we need to compute now. Note that it is straightforward to check that P(τ) is diagonal.
We use the fact that

d
dτ
←

T exp[−i â†â∫
τ

0
dτ′ K(τ′)] = −i â†â K(τ)

←

T exp[−i â†â∫
τ

0
dτ′ K(τ′)] (B7)

to find the equation

− (â†â)2 K ∫
τ

0
dτ′ K P = Ṗ, (B8)

where now the explicit dependence on τ is dropped for convenience of presentation.
Since K is invertible [for all cases except when χ̃2(τ) = 0, which implies P = 𝟙], we can manipulate this equation and obtain, after some

algebra,

P̈ −
⎛
⎜
⎜
⎝

˙̃χ2(τ)/χ̃2(τ) + 2 i
d

dτ
(ϕ2 + θ̂2) 0

0 ˙̃χ2(τ)/χ̃2(τ) − 2 i
d

dτ
(ϕ2 + θ̂2)

⎞
⎟
⎟
⎠

Ṗ − 4 χ̃2
2(τ) (â†â)2 P = 0. (B9)

We can now solve the four differential equations contained in (B9), two of which are trivial and read P̂12 = P̂21 = 0, which read

˙̂P11 − (˙̃ρ2(τ)/χ̃2(τ) + 2 i
d

dτ
(ϕ2 + θ̂2)) ˙̂p11 − 4 χ̃2

2(τ) (â†â)2 P̂11 =0,

˙̂P22 − (˙̃ρ2(τ)/χ̃2(τ) − 2 i
d

dτ
(ϕ2 + θ̂2)) ˙̂p22 − 4 χ̃2

2(τ) (â†â)2 P̂22 =0. (B10)

The differential equations (B10) do not admit an explicit solution in general. However, they can be integrated numerically when an explicit
form of g̃2(τ) and g̃′(τ) is given.

These differential equations have to be supplemented by initial conditions. We note that, since the left hand side of (B5) is the identity
matrix for τ = 0, we have that P(0) = 0, which implies P̂11(0) = P̂22(0) = 𝟙. In addition, taking the time derivative of both sides of (B5) and
setting t = 0, it is easy to check that this implies d

dτ P̂11∣τ=0 =
d

dτ P̂22∣τ=0 = 0.
Given that the differential equations are valid only when g̃2(τ) ≠ 0, it is convenient to introduce the functions p̂11(y) and p̂22(y)

defined as

P̂11(τ) = p̂11(y) ∶=p̂11(2∫
τ

0
dτ′χ̃2(τ′)),

P̂22(τ) = p̂22(y) ∶=p̂22(2∫
τ

0
dτ′χ̃2(τ′)), (B11)

where we have introduced y(τ) ∶= 2 ∫
τ

0 dτ′χ̃2(τ′). In terms of these functions, we have that the differential equations (B10) read

χ̃2(τ) ˙̂p11 − i
d

dτ
(ϕ2 + θ̂2) ˙̂p11 − χ̃2(τ) (â†â)2 p̂11 = 0,

χ̃2(τ) ˙̂p22 + i
d

dτ
(ϕ2 + θ̂2) ˙̂p22 − χ̃2(τ) (â†â)2 p̂22 = 0, (B12)
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where the derivative stands for derivative with respect to the variable y.
This has allowed us to find an expression for Ssq(τ) = P − i a†â ∫

τ
0 dτ′ K P, which reads

Ssq(τ) =
⎛
⎜
⎜
⎝

p̂11 −2 i â†â∫
τ

0
dτ′ χ̃2(τ′) e2 i (ϕ2+θ̂2) p̂22

2 i â†â∫
τ

0
dτ′ χ̃2(τ′) e−2 i (ϕ2+θ̂2) p̂11 p̂22

⎞
⎟
⎟
⎠

. (B13)

Given that we know that, in general, one has

Ssq(τ) = ( α̂ β̂
β̂† α̂†), (B14)

this immediately allows us to identify the Bogoliubov coefficients as

α̂ = p̂11,

β̂ = −2 i â†â∫
τ

0
dτ′ χ̃2(τ′) e2 i (ϕ2+θ̂2) p̂†

11, (B15)

with the auxiliary consistency condition p̂22 = p̂†
11. This condition also follows from (B10).

3. Useful expressions
Here, we present a list of useful expressions that are too cumbersome to appear in the main text but include key steps for the obtainment

of the final results.
We start by presenting the expressions for R[g̃1(τ) Ê2 (α̂† + β̂†)] and I[g̃1(τ) Ê2 (α̂†

− β̂†)] for the case of constant couplings χ̃2 and g̃′2,
which read

R[g̃1(τ) Ê2 (α̂† + β̂†)] = g̃(+)
1 [cos(Λ̂ τ) + 2 χ̃2

â†â
Λ̂

sin(2ϕ2) sin(Λ̂ τ)] − g̃(−)
1 [

K̂
Λ̂

+ 2 χ̃2
â†â
Λ̂

cos(2ϕ2)] sin(Λ̂ τ),

I[g̃1(τ) Ê2 (α̂†
− β̂†)] = g̃(+)

1 [
K̂
Λ̂
− 2 χ̃2

â†â
Λ̂

cos(2ϕ2)] sin(Λ̂ τ) + g̃(−)
1 [cos(Λ̂ τ) − 2 χ̃2

â†â
Λ̂

sin(2ϕ2) sin(Λ̂ τ)]. (B16)

This allows us to find

Û(t) ∶= e−i ∫
τ

0 dτ′ω̃c(τ′)â† â+i F̂(2) (â† â )2

e−i θ̂2 b̂† b̂ Ûsq e
−i â† â ∫

τ
0 dτ′ g̃(+)

1 (τ) [cos(Λ̂ τ′)+2 χ̃2
a† â
Λ̂

sin(2 ϕ2) sin(Λ̂ τ′)] B̂+

× e
i â† â [ K̂

Λ̂
+2 χ̃2

a† â
Λ̂

cos(2 ϕ2)] ∫
τ

0 dτ′ g̃(−)
1 (τ′) sin(Λ̂ τ′) B̂+ e

i â† â [ K̂
Λ̂
−2 χ̃2

a† â
Λ̂

cos(2 ϕ2)] ∫
τ

0 dτ′ g̃(+)
1 (τ′) sin(Λ̂ τ′) B̂−

× e
i â† â ∫

τ
0 dτ′ g̃(−)

1 (τ′) [cos(Λ̂ τ′)−2 χ̃2
a† â
Λ̂

sin(2 ϕ2) sin(Λ̂ τ′)] B̂− . (B17)

APPENDIX C: PROPERTIES OF THE FINAL STATE

The final state ρ̂(τ) can be partially computed analytically, given the expressions for our initial state (6) and the time-evolution operator
(12), and reads

ρ̂(τ) = e−∣μ∣
2

∑
n,m,p

tanh2 prT

cosh2rT

μn μ∗m

√
n!
√

m!
Û(t)∣n⟩∣p⟩⟨m∣⟨p∣Û†(t), (C1)

which can be made slightly more explicit as

ρ̂(τ) = e−∣μ∣
2

∑
n,m,p

tanh2 prT

cosh2rT

μn μ∗m

√
n!
√

m!
e−i ∫

τ
0 dτ′ω̃c(τ′)(n−m)+i (F̂(2)

n n2
−F̂(2)

m m2)

× e−i θ̂2,n b̂† b̂ Ûsq,n e−i ∫
τ

0 dτ′ n R[g̃1(τ′) Ê2 (α̂†+β̂†)]
n

B̂+ ei ∫
τ

0 dτ′ n I[g̃1(τ′) Ê2 (α̂†−β̂†)]
n

B̂−

∣n⟩∣p⟩⟨m∣⟨p∣e−i ∫
τ

0 dτ′ m I[g̃1(τ′) Ê2 (α̂†−β̂†)]
m

B̂− ei ∫
τ

0 dτ′ m R[g̃1(τ′) Ê2 (α̂†+β̂†)]
m

B̂+ Û†
sq,m ei θ̂2,m b̂† b̂. (C2)

In expression (C2), the subscripts n and m mean that the respective quantities are evaluated for â†â→ n, m.
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1. Reduced final state of the mechanical oscillator
We can compute the final reduced state ρ̂m(τ) of the mechanical resonator. We can obtain it as ρ̂m(τ) ∶= Trc(ρ̂(τ)), which we can compute

using (C2). We find

ρ̂m(τ) = e−∣μ∣
2

∑
n,p

tanh2 prT

cosh2rT

∣μ∣2 n

n!
e−i θ̂2,n b̂† b̂ Ûsq,n e−i ∫

τ
0 dτ′ n R[g̃1(τ′) Ê2 (α̂†+β̂†)]

n
B̂+ ei ∫

τ
0 dτ′ n I[g̃1(τ′) Ê2 (α̂†−β̂†)]

n
B̂−

∣p⟩⟨p∣e−i ∫
τ

0 dτ′ n I[g̃1(τ′) Ê2 (α̂†−β̂†)]
n

B̂− ei ∫
τ

0 dτ′ n R[g̃1(τ′) Ê2 (α̂†+β̂†)]
n

B̂+ Û†
sq,n ei θ̂2,n b̂† b̂. (C3)

Note that here, again, the subscript n means that we need to replace n→ â†â.

APPENDIX D: MIXEDNESS IN THE FINAL REDUCED STATE OF THE MECHANICAL OSCILLATOR

Here, we compute the mixedness of the reduced state of the mechanical oscillator. Given that any pure state ρ̂ has the property that
ρ̂2
= ρ̂, it follows that the mixedness of a state can be quantified by the linear entropy SN defined as SN (ρ̂) ∶= 1 − Tr(ρ̂2).

In general, although the expression (C3) gives us some insight into the reduced state of the mechanical mode, it is difficult to obtain
the mixedness for arbitrary parameters of the Hamiltonian. We therefore proceed to specialize to an interesting, yet general enough, scenario
below.

1. Mixedness of the reduced state of the mechanical oscillator: No cross-Kerr squeezing
In the case where g̃2 = 0 we have Ûsq,n = 𝟙, α̂ = 𝟙, and β̂ = 0. Therefore, with some algebra, we can show that expression (C3)

simplifies to

ρ̂m(τ) = e−∣μ∣
2

∑
n,p

tanh2 prT

cosh2rT

∣μ∣2 n

n!
e−i θ̂2 b̂† b̂ e−i ∫

τ
0 dτ′ n [g̃∗1 (τ′) e−i θ̂2,n b̂†+g̃1(τ′) ei θ̂2,n b̂]

∣p⟩⟨p∣ ei ∫
τ

0 dτ′ n [g̃∗1 (τ′) e−i θ̂2,n b̂†+g̃1(τ′) ei θ̂2,n b̂] ei θ̂2 b̂† b̂. (D1)

Therefore, we can easily show that the linear entropy SN (ρ̂m(τ)) associated with this state reads

SN (ρ̂m(τ)) = 1 − e−2 ∣μ∣2
∑

n,n′ ,p,p′

tanh2 p+2 p′ rT

cosh4rT

∣μ∣2 n

n!
∣μ∣2 n′

n′!
∣⟨p∣D̂nn′ (τ)∣p′⟩∣2, (D2)

where we have introduced

D̂nn′ (τ) ∶= ei ∫
τ

0 dτ′ n [g̃∗1 (τ′) e−i θ̂2,n b̂†+g̃1(τ′) ei θ̂2,n b̂] e
−i ∫

τ
0 dτ′ n′ [g̃∗1 (τ′) e−i θ̂2,n′ b̂†+g̃1(τ′) ei θ̂2,n′ b̂]

= ei ψnn′ ei Δnn′ b̂ ei Δnn′ b̂† (D3)

and defined Δnn′ ∶= ∫
τ

0 dτ′ g̃1(τ′)(n ei τ′+2 i n ∫
τ′

0 dτ″ g̃′2(τ″)
− n′ ei τ′+2 i n′ ∫

τ′
0 dτ″ g̃′2(τ″)

). Note that the exact form of ei ψnn′ does not matter since it

cancels out in (D2).
It is also easy to check that SN (ρ̂m(τ)) can also be written as

SN (ρ̂m(τ)) = 1 − 2 e−2 ∣μ∣2
∑

n,n′ ,p=0
∑
k=1

tanh4 p+2 krT

cosh4rT

∣μ∣2 n

n!
∣μ∣2 n′

n′!
∣⟨p∣D̂nn′ (τ)∣p + k⟩∣2 − e−2 ∣μ∣2

∑
n,n′ ,p=0

tanh4 prT

cosh4rT

∣μ∣2 n

n!
∣μ∣2 n′

n′!
∣⟨p∣D̂nn′ (τ)∣p⟩∣2. (D4)

Now, we can follow the same procedure introduced in Ref. 6 and compute (D4) explicitly. We find

SN (ρ̂m(τ)) = 1 − e−2 ∣μ∣2
∑
n,n′

∣μ∣2 n+2 n′

n! n′!

exp[− 1
cosh rT

∣Δnn′ ∣
2
]

cosh rT
. (D5)

We note that, as expected, the result (D5) reduces to the existing one in the literature for g̃′2(τ) = 0, see Ref. 6.
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