
1

Performance Optimisation and Productivity
for EU HPC Centres of Excellence

(and European parallel application developers
preparing for exascale)

Marta Garcia-Gasulla (Barcelona Supercomputing Center)
Brian Wylie (Jülich Supercomputing Centre)

Minisymposium
7 & 8 July 2021
11:00 – 13:00 CEST

• Imminent exascale computer systems challenge application developers
• beyond commonplace execution performance and scaling inefficiencies,

that also limit productivity of all parallel applications

• EU has funded HPC Centres of Excellence to prepare applications
• including transversal Performance Optimisation and Productivity (POP) CoE,

to support the other CoEs and the wider community of European developers

2

Overview

2021/07/07

3

EU HPC Centres of Excellence

I
I
I
I

https://www.hpccoe.eu

2021/07/07

EU H2020 Centre of Excellence (CoE) 1 October 2015 – 31 March 2018
1 December 2018 – 30 November 2021

Grant Agreement No 676553 and No 824080

EU HPC Centre of Excellence
Performance Optimisation & Productivity

Brian Wylie (Jülich Supercomputing Centre)

• Promotes best practices in parallel programming
• Improving parallel software can add a lot of value: reduced expenditure, faster results, novel solutions
• POP Methodology​ - a systematic approach to performance analysis and optimization

building a quantitative view of parallel application execution behaviour

• Free services for all European (EU/EEA and associate countries) academic and industrial codes and users
• Suggestions on improving code performance, described in a Performance Assessment
• Practical help with code refactoring and optimization via prototyping in a Proof of Concept

• A team with
• Excellence in performance tools and tuning
• Excellence in programming models and practices
• R & D background in real academic and industrial use cases

2021/07/07 5

Performance Optimisation and Productivity
EU H2020 Centre of Excellence in HPC

For further information, visit: https://www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

How do we measure the performance of our parallel programs?

• Traditional speed-up and efficiency plots?

• Profiling & tracing with performance tools?
• Each technique is powerful, but potentially generates overwhelming amount of data

6

Parallel performance is hard to understand

Cube, performance metrics per routines/call path,
data collected by Scalasca/Score-P

Paraver, timeline view of program execution,
data collected by Extrae

Speedup plot

Difficult to know where to start and what to look for
Main Problem: Lack of quantitative understanding of the actual execution behaviour

of a parallel application

Open-source tools

• Extrae (tracing), Paraver (analysis & visualisation) & Dimemas (modelling)
• https://tools.bsc.es

• Score-P (profiling and tracing), Scalasca (extended analyses) & CUBE (presentation)
• https://www.scalasca.org https://www.score-p.org

• MAQAO: synthetic reports and hints with a focus on processor core performance
• http://www.maqao.org

• PyPOP: automated generation of POP metrics from Extrae traces
• https://github.com/numericalalgorithmsgroup/pypop

For more help on how to use these tools and calculate the POP metrics

• See the POP website learning material & online training

• https://pop-coe.eu/further-information/learning-material

• https://pop-coe.eu/further-information/online-training

Other tools can also be used

2021/07/07 7

POP performance tools

MUST (MPI correctness) &
Archer (OpenMP correctness)
• https://hpc.rwth-aachen.de/must

https://pop-coe.eu/further-information/learning-material
https://pop-coe.eu/further-information/online-training

Simple but extremely powerful idea

• Devise a simple set of performance metrics using values easily obtained
from profile & trace measurement data

• Where low efficiency values indicate causes of poor parallel performance
for a Focus of Analysis (FoA)

These metrics then are used to understand

• What are the causes of poor performance

• Where it occurs in the application execution

• Additionally, the metrics provide a common ground for discussing
performance issues

• Between developers, users and analysts

8

The POP metricsA Solution:

9

POP Scaling Efficiency Metrics (MPI)

Parallel Efficiency
Describe how well the execution of the
code is working in parallel
ParE = LB × CommE

Global Efficiency
Describes how well the parallel
application scales.
GE = ParE × CompS

Computation Scaling
Describes how well the computational
work of an application scales with the
number of processors/threads.
CompS

Communication Efficiency
Reflects the loss of efficiency by
communication & synchronization.
CommE = max (CT/TT) = SerE × TraE

Load Balance
Measures how well work is distributed to
threads/processes in the application.
LB = average (CT) / max (CT)

Transfer Efficiency
Describes the loss of efficiency due to
actual data transfer time.
TraE = TT on ideal network / TT

Serialisation Efficiency
Describes efficiency loss due to
dependencies, waiting in MPI calls, etc.
SerE = max (CT / TT on ideal network)

Instruction Scaling
Compares the total number of
instructions executed for different
numbers of threads/processes.

IPC Scaling
Compares how many instructions per
cycle (IPC) are executed for different
numbers of threads/processes.

Frequency Scaling
Compares the processor frequency for
different numbers of threads/processes.

×

×

×

×

Key
CT Computation Time
TT Total Time
Ideal network data transfer takes zero time

For more details visit https://pop-coe.eu
2021/07/07

https://pop-coe.eu/

10

Performance assessment

.prv

Diagnosis

code

2021/07/07

11

POP services

2021/07/07

User or
developer

Online questionnaire

https://pop-coe.eu/request-service-form

Who will
obtain the

traces?

User or
developer

Client provides code,
input and instructions
on how to compile
and run it.

POP expert provides
instructions on how to
install tools and obtain
measurements.

traces
expert

expert

Parallel Application
Performance Assessment

Report

The report includes
suggestions to
improve performance

Developer

Code developer
implements
optimizations

Follow on
audit

expert

POP expert
implements
optimizations

Proof of Concept
prototype (PoC)code

Report

https://pop-coe.eu/request-service-form

2021/07/07 12

POP2 Services & HPC Codes

30%

18%28%

4%

5%

15%

POP2 Sectors

Engineering

Physics

Earth and atmospheric
sciences
Math

Biology and genetics

Others

Parallel Programming
Models

Programming
Languages

Code License

• See https://pop-coe.eu/blog/tags/success-stories

• POP for Astronomy - 40% Reduction in Execution Time for the PIERNIK Code

• Performance Improvements by More Than 30% and a Data Race Fixed for CalculiX Code

• 588x and 488x Execution Time Speedups of a Volcanic Hazard Assessment Code

• Vampire Magnetic Materials code sped up by 46%

• Improvements in Shearwater Reveil seismic processing code of up to 44% runtime reduction

• Performance Improvements for SCM’s ADF Modeling Suite

• 3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

• 25% Faster time-to-solution for Urban Microclimate Simulations

• 2x performance improvement for SCM ADF code

• Proof of Concept for BPMF leads to around 40% runtime reduction

• POP audit helps developers double their code performance

• 10-fold scalability improvement from POP services

• POP performance study improves performance up to a factor 6

• POP Proof-of-Concept study leads to nearly 50% higher performance

• POP Proof-of-Concept study leads to 10X performance improvement for customer

13

Some Success Stories

Improvements

Reductions

2021/07/07

https://pop-coe.eu/blog/tags/success-stories

• Resources for co-design
• Database of execution performance patterns and corresponding best practice

• Training & education
• Conference tutorials, tuning workshops, monthly training event series

• On-line training modules & webinars

• Joint application performance analysis workshops with E-CAM & EoCoE

• Periodic performance assessment campaigns
• Initial & follow-up rounds for 10 application codes of ChEESE

• Initial round for 8 application codes of CoEC

• Application exascale readiness assessments
• e.g., progression of problem sizes, computer systems (CompBioMed)

14

HPC community engagement

2021/07/07

• Imminent exascale computer systems challenge application developers
• beyond commonplace execution performance and scaling inefficiencies,

that also limit productivity of all parallel applications

• EU has funded HPC Centres of Excellence to prepare applications
• including transversal Performance Optimisation and Productivity (POP) CoE,

to support the other CoEs and the wider community of European developers

• Invited sectorial CoEs and developers of flagship application codes
• to review their progress and exascale readiness status of their codes

• to report their experience engaging with POP CoE and its services

• to suggest desirable service/support additions/improvements

16

PASC minisymposium overview

2021/07/07

Chair: Brian Wylie

• Best practice for efficient and scalable application performance
• Marta Garcia-Gasulla (Barcelona Supercomputing Center)

• Outcome of joint EoCoE-POP performance evaluation workshops
• Mathieu Haefele (Université de Pau et des Pays de l’Adour)

• POP and ChEESE – the audit of SeisSol for computational earthquake
simulations with GPU-aware MPI communication for local time stepping
• Ravil Dorozhinskii (Technische Universität München)

• Readying HemeLB and SCEMa codes for exascale with POP and E-CAM
Centres of Excellence
• Peter Coveney (University College London & University of Amsterdam)

17

Part I (Wed 7 July, 11:00-13:00 CEST)

2021/07/07

Chair: Marta Garcia-Gasulla

• Performance optimization and productivity of Alya towards exascale
• Ricard Borrell (Barcelona Supercomputing Center)

• Status of NEMO scalability and inputs from POP assessment
• Sebastien Masson (LOCEAN, Sorbonne Université)

• Materials design towards the exascale: porting electronic structure
community codes to GPUs
• Andrea Ferretti (CNR-NANO)

• Panel discussion

18

Part II (Thu 8 July, 11:00-13:00 CEST)

2021/07/07

Chair: Brian Wylie
• Marta Garcia-Gasulla (POP : Barcelona Supercomputing Center)

• Mathieu Haefele (EoCoE : Université de Pau et des Pays de l’Adour)

• Ravil Dorozhinskii (ChEESE : Technische Universität München)

• Peter Coveney (CompBioMed : University College London & U. Amsterdam)

• Ricard Borrell (CoEC/ChEESE/CompBioMed/EoCoE/EXCELLERAT/RAISE : BSC)

• Sebastien Masson (ESiWACE : LOCEAN, Sorbonne Université)

• Andrea Ferretti (MaX : CNR-NANO)

19

Panel

2021/07/07

• What challenges remain for your CoE (flagship) applications to be
ready to effectively exploit (imminent) exascale computer systems?
• Initially targeting one type of computer system or preparing for several types?

• What POP services have you found to be most beneficial?
• How should POP services (including training) be extended/improved?

20

Panel questions

2021/07/07

EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

Best Practice for Efficient and
Scalable Application Performance

Marta Garcia-Gasulla, BSC

• Between POP and POP2 more than 200 assessments performed.

• Only transversal CoE

• Assessed codes from almost all the other CoES

• Different fields, different sciences

• Common patterns and challenges

2021/07/07 22

Context

• All the images of this presentation are
taken from POP assessments or Proof-of-
concepts of CoEs codes

• All the names and references have been
intentionally removed

2021/07/07 23

Disclaimer

2021/07/07 24

Step by step…

Detailed Performance Analysis

• Forget about profiling and
aggregated metrics

2021/07/07 25

Performance Analysis

2021/07/07 26

Scaling the overhead

• Handle with care relative metrics and scalability

• Avoid profiling and be careful with relative metrics

• Performance analysts can help you with complementary view

• If it ain’t broke don’t fix it!
• Analyze before implementing solutions

• Do not mask your symptoms

2021/07/07 27

Performance Analysis

2021/07/07 28

Step by step…

Detailed Performance Analysis

Asynchrony

2021/07/07 29

Step by step…

Detailed Performance Analysis

• In general its use is quite extended, with different patterns:

2021/07/07 30

Asynchrony

2021/07/07 31

Asynchrony

• Not always with great success…

• But we are getting there…

2021/07/07 32

Asynchrony

• Common pitfalls:
• I’m using asynchronous calls, therefore communication is not a problem for

me

• I’m using asynchronous calls, therefore I am overlapping communication and
computation

2021/07/07 33

Asynchrony

Asynchrony

2021/07/07 34

Step by step…

Detailed Performance Analysis

Asynchrony

Overlap

2021/07/07 35

Step by step…

Detailed Performance Analysis

• Compute something that does not depend on the communication
between the communication and the wait.

for (i=0; i<N; i++){

compute_my_boundary()

for(all my neighbors){

Isend(my_boundary)

Irecv (her_boundary)

}

compute_my_internal()

wait_all

} 2021/07/07 36

Overlap

1 1

2

2

3

3

4

4

• Some applications do it, but not that popular.

• But… load imbalance is still there
you “pay” it at the end.

2021/07/07 37

Overlap

Asynchrony

Overlap

2021/07/07 38

Step by step…

Detailed Performance Analysis

Asynchrony

Overlap

Load balance

2021/07/07 39

Step by step…

Detailed Performance Analysis

• Where? Why? Source?

2021/07/07 40

Load imbalance

• Coupled problems

2021/07/07 41

Load imbalance @ the problem

• Same number of instructions

• 30% load imbalance

2021/07/07 42

Load imbalance @ IPC

2021/07/07 43

Load imbalance @ hardware

24 cores out of 300.000
were 6x slower!

• Some Isend calls took longer than usual

• Related to MPI library used, effect disappears when changing MPI
library

2021/07/07 44

Load imbalance @ system software

• Hardware issues

• Different performance between
“inner” processes and “boundary”
processes

• Some code only executed by
“boundary” nodes

2021/07/07 45

Load imbalance @ everywhere

• Cannot be predicted

• Too many factors can
produce it

• Do not fight it

• Adapt!!

2021/07/07 46

Load imbalance

Asynchrony

Overlap

Load balance

2021/07/07 47

Step by step…

Detailed Performance Analysis

Asynchrony

Overlap

Load balance

Hybridization

2021/07/07 48

Step by step…

Detailed Performance Analysis

• Why?
• Because it reduces the amount of communication

• Because it helps reduce load imbalance

• Because it helps to overlap communication and computation

• Because it helps handling low granularities

2021/07/07 49

Go Hybrid

2021/07/07 50

Go Hybrid

• Effect of hybridizing vs. pure MPI

• Helps overlap computation and communication

• Can have good side effects

2021/07/07 51

Go Hybrid

6
4

 M
P

I
8

x8
 h

yb
ri

d

Asynchrony

Overlap

Load balance

Hybridization

Trust the
programming
model and
malleability

2021/07/07 52

Step by step…

Detailed Performance Analysis

• Property of being adaptable to a change in the
environment (resources)

• Where?
• Programming model

• Application

• Recomendations:
• Avoid omp_get_thread_num, Threadprivate

• Scheduling  trust the runtime

• Focus on logic

2021/07/07 53

Malleability

2021/07/07 54

Trust the programming model

2021/07/07 55

Trust the programing model

Asynchrony

Overlap

Load balance

Hybridization

Trust the
programming
model and
malleability

2021/07/07 56

Step by step…

Detailed Performance Analysis

• Do not fly blind
• Let performance analysis guide you

• Asynchrony is not enough, overlap

• Overlap can hide Communication overhead but not load balance

• Do not fight variability, adapt!
• Be flexible and malleable

• Trust the programming model
• Forget about hardware

2021/07/07 57

Summary

2021/07/07 58

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

@POP_HPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

