Minisymposium
7 & 8 July 2021
11:00 —13:00 CEST

Overview

* Imminent exascale computer systems challenge application developers

* beyond commonplace execution performance and scaling inefficiencies,
that also limit productivity of all parallel applications

* EU has funded HPC Centres of Excellence to prepare applications

* including transversal Performance Optimisation and Productivity (POP) CoE,
to support the other CoEs and the wider community of European developers

2021/07/07 2

EU HPC Centres of Excellence

DioeXcel esiwace cam Soc
ChEES E N oot e

5 « N

A
W ‘E‘z"’c‘ﬁ‘E ' GoEXCELLERAT @ HDALGO RAISE

] |
|
OM W |
Targeting Real chemical accuracy at the EXascale

Fé&CUS

2021/07/07 3

EU HPC Centre of Excellence

Performance Optimisation & Productivity
Brian Wylie (Julich Supercomputing Centre)

1 October 2015 - 31 March 2018
1 December 2018 — 30 November 2021

EU H2020 Centre of Excellence (CoE)

Grant Agreement No 676553 and No 824080

(2 0 & Performance Optimisation and Productivity
EU H2020 Centre of Excellence in HPC

* Promotes best practices in parallel programming
* Improving parallel software can add a lot of value: reduced expenditure, faster results, novel solutions

* POP Methodology - a systematic approach to performance analysis and optimization
building a quantitative view of parallel application execution behaviour

* Free services for all European (EU/EEA and associate countries) academic and industrial codes and users
* Suggestions on improving code performance, described in a Performance Assessment
* Practical help with code refactoring and optimization via prototyping in a Proof of Concept

Barcelona /\ = VSB TECHNICAL | IT4AINNOVATIONS l >

Supercomputin, t ‘m JULICH
p puting Iera eC “. || || UNIVERSITY | NATIONAL SUPERCOMPUTING

Center » | OF OSTRAVA

Centro Nacional de Supercomputacion wJ ») - d

CENTER Forschungszentrum
? U/
UNIVERSITE DE /%
nag VERSAILLES & ‘ RWTH

ST-QUENTIN-EN-YVELINES

JULICH
SUPERCOMPUTING
CENTRE

HI_R:[S

* Ateam with
* Excellence in performance tools and tuning
* Excellence in programming models and practices
* R & D background in real academic and industrial use cases

For further information, visit: @ https://www.pop-coe.eu 8 pop@bsc.es D @PoP_HPC [youtube.com/POPHPC

Parallel performance is hard to understand 009

7 80% of Ideal

How do we measure the performance of our parallel programs?

* Traditional speed-up and efficiency plots?

* Profiling & tracing with performance tools?

* Each technique is powerful, but potentially generates overwhelming amount of data

-+------- ldeal scaling

—ea— Actual scaling

1 2 3 4 5 6 7 8

Number of compure nodes L o R in | 8 =

Cube, performance metrics per routines/call path,

Speedup plot
data collected by Scalasca/Score-P

Difficult to know where to start and what to look for

Main Problem: Lack of quantitative understanding of the actual execution behaviour

of a parallel application

Paraver, timeline view of program execution,
data collected by Extrae

POP performance tools

Open-source tools
» Extrae (tracing), Paraver (analysis & visualisation) & Dimemas (modelling)
* https://tools.bsc.es
» Score-P (profiling and tracing), Scalasca (extended analyses) & CUBE (presentation)
* https://www.scalasca.org https://www.score-p.org
« MAQADO: synthetic reports and hints with a focus on processor core performance
* http://www.magao.org
* PyPOP: automated generation of POP metrics from Extrae traces MUST (MPI correctness) &

* https://github.com/numericalalgorithmsgroup/pypop Archer (OpenMP correctness)
* https://hpc.rwth-aachen.de/must

For more help on how to use these tools and calculate the POP metrics

* See the POP website learning material & online training

* https://pop-coe.eu/further-information/learning-material

* https://pop-coe.eu/further-information/online-training

Other tools can also be used

2021/07/07 7

https://pop-coe.eu/further-information/learning-material
https://pop-coe.eu/further-information/online-training

i YeilViife]a® The POP metrics

Q

Simple but extremely powerful idea

* Devise a simple set of performance metrics using values easily obtained
from profile & trace measurement data

* Where low efficiency values indicate causes of poor parallel performance
for a Focus of Analysis (FoA)

These metrics then are used to understand
* What are the causes of poor performance

* Where it occurs in the application execution

* Additionally, the metrics provide a common ground for discussing
performance issues

* Between developers, users and analysts

POP Scaling Efficiency Metrics (MPI)

Parallel Efficiency
Describe how well the execution of the
code is working in parallel
ParE = LB x CommE

a

Communication Efficiency
Reflects the loss of efficiency by
communication & synchronization.
CommeE = max (CT/TT) = SerE x TraE

Global Efficiency Key
Describes how well the parallel CT Computation Time
application scales. TT Total Time
GE = ParE x CompS Ideal network data transfer takes zero time

Describes how well the computational
work of an application scales with the

n
C

CEMELE e 2 Instruction Scaling

Compares the total number of
instructions executed for different

umber of processors/threads.
P / numbers of threads/processes.

ompS
t

a

_)

a

4

Transfer Efficiency
Describes the loss of efficiency due to
actual data transfer time.

TraE =TT on ideal network / TT

A

—

Measures how well work is distributed to
threads/processes in the application.
LB = average (CT) / max (CT)

Compares how many instructions per
cycle (IPC) are executed for different
numbers of threads/processes.

)

- -

2021/07/07

4

A

d
S

—

Describes efficiency loss due to

Serialisation Efficiency Frequency Scaling

Compares the processor frequency for

ependencies, waiting in MPI calls, etc. different numbers of threads/processes.

erE = max (CT / TT on ideal network)

Load Balance IPC Scaling }

For more details visit https://pop-coe.eu

https://pop-coe.eu/

Performance assessment

-~
/ .

¢

Diagnosis

2021/07/07 10

POP services 009

.Cllent pr0\{|des Cofje’ Parallel Application
input and instructions Performance Assessment

on how to compile

Online questionnaire

and run it.

traces

= obtain the
POP expert provides
instructions on how to

Q = oo traces?
g é z = install tools and obtain
User or [MEESUEEIEE

User or developer

developer
y
POP expert Ny 4
implements w ProofofCo(n;eg)t
C ... prototype (Po
+ optimizations

Follow on ‘
2021/07/07 audit

expert 7‘ The report includes
de devel Q suggestions to
_CO € developer e improve performance
implements %

optimizations Developer

https://pop-coe.eu/request-service-form

35

25

15

10

M Engineering
B Physics

m Earth and atmospheric

sciences
Math

W Biology and genetics

H Others

POP2 Sectors

Programming
sc-+ Languages

W Fortran
B C++, Python
nC
m C, Fortran
C++, Fortran
B Python
B C, Python
I C++, Fortran, Python
B Fortran, Python
B C++, Fortran, Perl
C, Java
W C++, Fortran, Python, Java

POP2 Services & HPC Codes

15

10

009

Code License

mBSD

B GPL/LGPL
Apache

M no license

W Public
Other

MW internal use

= Commercial

Parallel Programming
. Models

B MPI+threads

B MPI+threads+accel
MPI+accel
MPI+TBB

B MPI+TBB+accel

I threads

W threads+accel

® Origami HPC

W Celery

' WDL

Some Success Stories

* See = https://pop-coe.eu/blog/tags/success-stories

Piernik

—
Wl
ChEESE
& i

success ¥

SCM
'-

‘ A 6;>n

POP for Astronomy - 40% Reduction in Execution Time for the PIERNIK Code
Performance Improvements by More Than 30% and a Data Race Fixed for CalculiX Code
588x and 488x Execution Time Speedups of a Volcanic Hazard Assessment Code
Vampire Magnetic Materials code sped up by 46%

Improvements in Shearwater Reveil seismic processing code of up to 44% runtime reduction
Performance Improvements for SCM’s ADF Modeling Suite

3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

25% Faster time-to-solution for Urban Microclimate Simulations

2x performance improvement for SCM ADF code

Proof of Concept for BPMF leads to around 40% runtime reduction

POP audit helps developers double their code performance

10-fold scalability improvement from POP services

POP performance study improves performance up to a factor 6

POP Proof-of-Concept study leads to nearly 50% higher performance

POP Proof-of-Concept study leads to 10X performance improvement for customer

2021/07/07

Improvements

Reductions

13

https://pop-coe.eu/blog/tags/success-stories

HPC community engagement 009

e Resources for co-design
» Database of execution performance patterns and corresponding best practice

* Training & education
* Conference tutorials, tuning workshops, monthly training event series
* On-line training modules & webinars
* Joint application performance analysis workshops with E-CAM & EoCoE

* Periodic performance assessment campaigns
* |nitial & follow-up rounds for 10 application codes of ChEESE
* |nitial round for 8 application codes of CoEC

* Application exascale readiness assessments
e e.g., progression of problem sizes, computer systems (CompBioMed)

2021/07/07 14

PASC minisymposium overview

* Imminent exascale computer systems challenge application developers
* beyond commonplace execution performance and scaling inefficiencies,
that also limit productivity of all parallel applications
* EU has funded HPC Centres of Excellence to prepare applications
* including transversal Performance Optimisation and Productivity (POP) CoE,
to support the other CoEs and the wider community of European developers
* Invited sectorial CoEs and developers of flagship application codes
* to review their progress and exascale readiness status of their codes
* to report their experience engaging with POP CoE and its services
* to suggest desirable service/support additions/improvements

2021/07/07 16

Part | (Wed 7 July, 11:00-13:00 CEST)

Chair: Brian Wylie

» Best practice for efficient and scalable application performance
* Marta Garcia-Gasulla (Barcelona Supercomputing Center)

e Qutcome of joint EOCoE-POP performance evaluation workshops
 Mathieu Haefele (Université de Pau et des Pays de I'Adour)

* POP and ChEESE — the audit of SeisSol for computational earthquake
simulations with GPU-aware MPI communication for local time stepping

* Ravil Dorozhinskii (Technische Universitat Minchen)

e Readying HemelB and SCEMa codes for exascale with POP and E-CAM
Centres of Excellence

* Peter Coveney (University College London & University of Amsterdam)

2021/07/07 17

Part Il (Thu 8 July, 11:00-13:00 CEST)

Chair: Marta Garcia-Gasulla

* Performance optimization and productivity of Alya towards exascale
 Ricard Borrell (Barcelona Supercomputing Center)

 Status of NEMO scalability and inputs from POP assessment
* Sebastien Masson (LOCEAN, Sorbonne Université)

* Materials design towards the exascale: porting electronic structure
community codes to GPUs

* Andrea Ferretti (CNR-NANO)
e Panel discussion

2021/07/07 18

Panel

Chair: Brian Wylie
* Marta Garcia-Gasulla (POP : Barcelona Supercomputing Center)
* Mathieu Haefele (EoCoE : Université de Pau et des Pays de I'Adour)

* Ricard Borrell (CoEC/ChEESE/CompBioMed/EoCoE/EXCELLERAT/RAISE : BSC)
e Sebastien Masson (ESiWACE : LOCEAN, Sorbonne Université)
* Andrea Ferretti (MaX : CNR-NANO)

2021/07/07 19

Panel questions 009

* What challenges remain for your CoE (flagship) applications to be
ready to effectively exploit (imminent) exascale computer systems?
* Initially targeting one type of computer system or preparing for several types?

* What POP services have you found to be most beneficial?
* How should POP services (including training) be extended/improved?

2021/07/07 20

Best Practice for Efficient and
Scalable Application Performance

Marta Garcia-Gasulla, BSC

EU H2020 Centre of Excellence (CoE) 1 December 2018 — 30 November 2021

Grant Agreement No 824080

Context 009

* Between POP and POP2 more than 200 assessments performed.
* Only transversal CoE
* Assessed codes from almost all the other CoES

e Different fields, different sciences A 2

, European
o Excellence in
HPC Applications

1

 Common patterns and challenges

FITT .\
Adr0L B,
[TTTTT

2021/07/07 22

Disclaimer

* All the images of this presentation are
taken from POP assessments or Proof-of-
concepts of CoEs codes

 All the names and references have been
intentionally removed

2021/07/07 23

Step by step...

o .
Detailed Performance Analysis

2021/07/07 24

Performance Analysis

* Forget about profiling and
aggregatEd metrlcs Total 127,719.17 %

Average 11,58 b
Maximum 59.45 T
Minimum 36.44

StDev 237 %

AvgiMax 0,70

2021/07/07

0.02 4.21%

009

Outside MPI | MPI_Send QRS0 MPT Isend | MPI Irecy MPI_Allred uce

5227 %) 12.94595%| 3.095.24%| 2287.20% 4E.432.93 %

11260724 %

101% 074%
0.17 % 4.40% 194% 1.10% 28.14 % 46.25 %
.0 1490 % .56 % 146 b b4 W 26.50 &
0.01 % 000%| 043% 00BN 3.52 0% 3.43 %
.10 [96 0.52 U.b .56 0,79
Nodes 16 32 64
Cores 768 1536 3072

Global efficiency

-Parallel efficiency

-Load Balance

-Communication efficiency

-Serialization efficiency

-Transfer efficiency

-Computational Scaling

-IPC Scaling

-Instruction Scaling

-CPU Frequency Scaling

FOM

5e+08

4e+08

3e+08

2e+08

1e+08

Scaling the overhead

* Handle with care relative metrics and scalability

L ... |deal size-up

|
0 4096

2021/07/07

| | | |
8192 12288 16384 20480 24576
MPI processes (each with 64 OpenMP threads)

28672

Racks 3 1 2 4 8 16 25

Processor distribution | Sx8x8 | 16x8x8 | 16x16x8 | 16x16x16 | 32x16x16 | 32x32x16 | 32x32x28

Processes | 512 1024 2048 4096 4192 163584 28672

Threads | 32768 | 65536 | 131072 | 262144 524288 | 104857 1835008
- Parallel efficiency 0.67 (.67 0.67 0.67 0.67 (L6T (.65
- - Load balance efficiency 0.96 .96 (.96 (.96 0.96 (1.96 0.95
- - Communication efficiency | 0.70 (.70 (.70 (.70 (.70 (.70 (.69
- - - Serialization efficiency 0.70 .70 0.70 0.70 0.70 0.70 .69
- - - Transfer efficiency L.00 1.00 L.00) 1.00 1.00 1.00 1.00
- Computation efficiency 1 1.00 1.00 1.00 L.00 1.010 0.97
- - Instructions scaling 1 1.00 L.00) 1.00 1.00 1.00 1.00
- - IPC scaling 1 1.00 1.00 1.00 L.00 1.010 (.98

26

Performance Analysis

* Avoid profiling and be careful with relative metrics
* Performance analysts can help you with complementary view

 If it ain’t broke don’t fix it!
* Analyze before implementing solutions

* Do not mask your symptoms

2021/07/07 27

Step by step...

o .
Detailed Performance Analysis

2021/07/07 28

Step by step...

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 29

Asynchrony

* In general its use is quite extended, with different patterns:

B Outside MPI
| B MPI_Isend
B MPI Irecw
[MPI Waitall

HREAD 1.38.1 HA [1] (AN | O] outside MPI
THREAD 1.37.1 HE B2 11l L] wPI Recv
THREAD 1.38.1 [- ! (AN B HPI_Isend
THREAD 1.39.1 [] | BE ninm .HPI"HH‘ilt
THREAD 1.32.1 N . T.] | I eyl)
THREAD 1.43.1 | F I B AE0 B 10D
THREAD 1.44.1 HE o EE @ nil
THREAD 1.43.1 HE [} 1 B 1t
THREAD 1.45.1 [I niap i = 111
THREAD 1.47.1 [] | ann it 0 1l

157 usx 294

2021/07/07 30

Asynchrony

* Not always with great success...

THREAD 1.1.1 T P .
THREAD 1.2.1 TR T .
THREAD 1.3.1 — L]
THREAD 1.4.1 I T A—
THREAD 1.5.1 W O P
S A P T . 1
T el e e e O outside MPI
THREAD 1.5.1 A B Y T O —
THREAD 1.9.1 - - .
THREAD 1.10.1 VN S S . e . HPI_EEnd
THREAD 1.11.1 L2 1} -
THREAD 1,121 -m-. . MPI Irecvy
THREAD 1.13.1 T T GRS e —_
THREMD 1.14.1 S N S G = U L -
THREAD 1.15. 1 Y T N . . MPI Wait
THREAD 1.15.1 - -
THREAD 1.17.1 —
THREAD 1.18.1 —
THREAD 1.19.1 ——
THREAD 1.28.1 —- -
THREAD 1.21.1 —
THREAD 1.22.1 L
THREAD 1.23.1
THREAD 1.24.1 —

O —
[———

O outside MPT
|:|]l[F'I_?.er:v

B up1 1send
B wpI Waitall

2021/07/07 31

Asynchrony

* But we are getting there...

Proposed:

2021/07/07

O cutside wpT
[} MPI_Irecw
B wp1_wait

0 wpT_tssend

22% improvement

0 outaide wp1
B wpr_Tsend

[| MPI_Irecw
By wWait

32

Asynchrony POP

e Common pitfalls:

* I'm using asynchronous calls, therefore communication is not a problem for
me

* I'm using asynchronous calls, therefore | am overlapping communication and

.
CompUtathn
HREAD 1.3A,1 HA [1] (AN N |
THREAD 1.37.1 HE -§-d (NN |
THREAD 1.38.1 [J-] iz (BER |
THREAD 1.39.1 [J | HE (N
THREAD 1.42.1 HE .| | I B RNN
THREAD 1.43.1] A ill B 1
THREAD 1.44.1 HE e o EE 2 111
THREAD 1.43.1 HE [] g1 B 1t
THREAD 1.45.1 [I niap i = 111
THREAD 1.47.1 [] | []]| 1l n 1l
5T ws

2021/07/07 33

Step by step...

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 34

Step by step...

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 35

Overlap 009

* Compute something that does not depend on the communication
between the communication and the wait.

for (i=0; i<N; i++){
compute_my_boundary()@
for(all my neighbors){

Isend(my_boundary)e

Irecv (her_boundary) =3
compute_my_internal()@) i =
wait_all @) _— E
} 2021/07/07 . i

Overlap

* Some applications do it, but not that popular.

e But... load imbalance is still there
you “pay” it at the end.

THREAD 1.1.1

THREAD 1.67.1
THREAD 1.133.1
THREAD 1.132.1
THREAD 1.265.1
THREAD 1.331.1
THREAD 1.337.1

THREAD 1.483.1

T
T
-
I
|
|
|
I
T
-
-
-
T
T
I
T
T
|
|
I
T
-
-
T
T
-
I
|
R

2021/07/07 37

Step by step...

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 38

Step by step...

‘Load balance
O

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 39

Load imbalance

* Where? Why? Source?

2dh useful instructions @ e . instructions @

=
oo

s = % % % O%T % % OSSO OWOROC
—_—

" = §¥ @® ® @ ©® ¥ ® ® =® =
O R T T T T

[

a

i
— T em mm mm mm mm mm o
5 CL BT BT BT BT TLY BT BT BT BT e BT |

2021/07/07

Load imbalance @ the problem

* Coupled problems

r.

)
[

8 ¥ -8 A
. ' ,‘
n

C L

2021/07/07 41

Load imbalance @ IPC

e Same number of instructions
 30% load imbalance

IPC=2.77

2021/07/07 42

Load imbalance @ hardware 000

| 962654839.965 T ~| |~ O 16142.605 hemepure - O 14.297 MFI Rank 61339 S
| @ 56706790196 Visits (occ) ~ O 113,137 main 0 14.233 MPI Rank 61340 g
+ [9.248215 Bytes transferred | 0 10.673 MPI Initialized O 14.329 MP| Rank 61341 e |
- = Amaresarsin o oporation: 0 40165528.272 MPI_nit 61:24.074 MP! Rank 61342 i
nputational » B 791757564.742 SimulationMaster 0 13.955 MPI Rank 61343
IT_INS (#) ~ [3008.316 RunSimulatian ~ O - node i02r08c05507. s Irz de '§
MT_CYC %) [935,747 MP|_Gather 1 14.958 MPI Rank 61344 8
FOYC (#) + O 13409.387 DoTimest: H 99.722 MPI Rank 61345 &
S STL(#) ¥ 18251151.892 HandieActors [13.129 MPI Rank 61346
[J 102633284945 MPI Waitall M 99.249 MPI Rank 61347
O 241644.488 MPI_isend 0O 12.735 MPI Rank 61348]
0 67538.376 MPI_irecy H 98.505 MP| Rank 61349 T
0 26924.351 MPI_Gather O 14.411 MPI Rank 61350
» [3923.866 Finalise H 97.176 MPI Rank 61351
+ O 377.011 ~SimulationMaster 0 13.971 MPI Rank 61352
[473282.158 MPI_Finalize M 98.669 MPI Rank 61353

O 14.893 MPI Rank 61354
[~ 100.000 MPI Rank 61355}
| [14.838 MPI Rank 61356
H 98.864 MPI Rank 61357
O 14633 MPI Rank 61358
W 923.728 MPI Rank 61350
O 13.933 MPI Rank 61360
H 98,618 MPI Rank 61361
0 14.556 MPI Rank 61362
M 99.284 MP| Rank 61363
O 14629 MPI Rank 61364
® 91.621 MPI Rank 61365
O 13.057 MPI Rank 61366
H 99.125 MPI Rank 61367
O 12.906 MPI Rank 61368
M 98,677 MPI Rank 61369
O 13.001 MPI Rank 61370
97.072 MPI Rank 61371
1 14.474 MPI Rank 61372
H 88.486 MP| Rank 61373
0 14 163 MPI Rank 61374
j 93.863 MPI Rank 61375
14.311 MPI Rank 61376
98,363 MPI Rank 61377
14.400 MP| Rank 61378
85.227 MPI Rank 61379
24 cores out of 300.000 |reubed
98.976 MPI Rank 61381
14.905 MPI Rank 61382
I 98.764 MF| Rank 61383
were ox siower! 14232 WPl Rank 61384
98.340 MP| Rank 61385
13.890 MPI Rank 61386
87.216 MPI Rank 61387
14.361 MP| Rank 61388
99.354 MPI Rank 61389

O 14.290 MP| Rank 61330
W 98.974 MPI Rank 61391
~ O - node i02r08c05508.sng.lIrz.de
O 14.309 MPI Rank 61392
0 14.248 MPI Rank 61393
! 1 O 12.777 MPI Rank 61394
rocess (size 300000 } 61355 0 14352 MPI Rank 61395
Thread { size 1} o O 13.017 MPI Rank 61395
node 102r08c05507 sng.Irz.de O 14.525 MPI Rank 61397
MPI Rank 61355 O 14.155 MPI Rank 61396
61355 O 14.360 MPI Rank 61399 -
o »
100.00000000 {100.000%} = =
392.17060900 {100.000%} L]
Number of elements: 1 (] 9.627&6' |0,ooo 1.825e7 (1.896%) }oooool

2021/07/07 43

Load imbalance @ system software

* Some Isend calls took longer than usual

e Related to MPI library used, effect disappears when changing MPI
library g

THREAD

2021/07/07 44

Load imbalance @ everywhere 000

e Hardware issues

* Different performance between
io: V4 o ”
inner” processes and “boundary

processes

* Some code only executed by
“boundary” nodes

2021/07/07 45

Load imbalance

e Cannot be predicted

* Too many factors can
produce it

* Do not fight it
e Adapt!!

2021/07/07

Step by step...

‘Load balance
O

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 47

Step by step...

‘Hybridization

‘Load balance
O

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07 48

Go Hybrid POP

e Why?
* Because it reduces the amount of communication
* Because it helps reduce load imbalance
* Because it helps to overlap communication and computation

* Because it helps handling low granularities

Useful Duration @

* The transfer of each call is 16 bytes.

* The duration of the computations is similar
to the duration of MPI _Isend and MPI_Irecv!

MPI call @

THREAD 1.1.1 B outside MPI
THREAD 1.2.1 B MPI_Isend
B MPI_Irecv
B WPI_Mait

THREAD 1.3.1

THREAD 1.4.1

49

2021/07/07

Go Hybrid

e Effect of hybridizing vs. pure MPI

43% improvement

08 o e o

12% improvement

50% improvement

2021/07/07

Go Hybrid POP

* Helps overlap computation and communication

e Can have good side effects

64 MPI

i
I*|||
|
Nl
|
|

I|||II|'||

1) O o 00 OO g

| TR LT AT 't
LTI A T AT
|

|
|
1T
|
|
| |
TR
il etk L
|
|
e S
=

Al

8x8 hybrid

ol e
0l

Iill
|1'|:|I

|
|
THIR

(10l

|

i il o b

II'|

el

=

- --.‘
- | ---_= - =
H 2 e e

T e
..'=-:.-":-:-"E:
Y . ":. i

I
I
=
e

2021/07/07 51

Step by step...

‘Trust the

Hybridization
‘Load balance
®

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07

programming
model and
malleability

52

Malleablllty

* Property of being adaptable to a change in the
environment (resources)
* Where?
* Programming model
* Application
 Recomendations:
* Avoid omp_get thread num, Threadprivate
e Scheduling = trust the runtime

* Focus on logic

2021/07/07 53

Trust the programming model

Large fraction of code
- ——— with parallels without

THREAD 1.281.1

THREAD 1.426.4 , . -
o - workshares
THREAD 1.141.1

THREAD 1.281.1

THREAD 1.426.4 , . 7

2021/07/07 54

Trust the programing model

2021/07/07

Master thread:0
OMP thread 3:0
OMP thread 2:1
OMP thread 1:2
Master thread:3
OMP thread 3:3
OMP thread 2:4
OMP thread 1:5
Master thread:6
OMP thread 3:6
OMP thread 2:7
OMP thread 1:8
Master thread:9
OMP thread 3:9
OMP thread 2:10
OMP thread 1:11
Master thread:12
OMP thread 3:12
OMP thread 2:13
OMP thread 1:14
Master thread:15
OMP thread 3:15
OMP thread 2:16
OMP thread 1:17
Master thread:18
OMP thread 3:18
OMP thread 2:19
OMP thread 1:20
Master thread:21
OMP thread 3:21
OMP thread 2:22
OMP thread 1:23
Master thread:24
OMP thread 3:24
OMP thread 2:25
OMP thread 1:26
Master thread:27
OMP thread 3:27
OMP thread 2:28
OMP thread 1:29
Master thread:30
OMP thread 3:30
OMP thread 2:31

”
hn p, - S II-I e m

-I!III .Bln] ;I q;l-lu l|_|||

Timeline (A0
0Os 5s 105 155 205 255 30s 35s
E : s -m_l.q i ._ '_m-:_ oy S 1 ||—1
5 i 1 e | .. IR 'ﬂ_- _...n.q_&....—_

i : Hnl-I g ;:-1 Eu”u i e oyl

E— AR IR L, S .., B0 . B,

= indin (i ' ||||| mmq.g |3q_-|

s i |.) I es_!e!)

- . _I) mil gy i, - . ‘. li g

= i " qn iyl - - il 5 : . i

= t -Iulluu-u iull.l III -llu \ ol .I 'y

4 ml‘ ||B |] ,||‘_| ing I
:— _____ j

R o .1-_ _L
-:._' wuph (g mla i

chedoden bbb bbb B g b

L

SN P PO Y N P

nur- " II-I *) | T "FF'~ 1-*- m--r

‘ _I I||I|-| qull_lllll |i|-|n|||—|F||l||i_llrl_ll|i|pi|

— -IF _l -I ruuuﬂ—ru .—-. ,llllqll-lll_l |Iri| I

1 i IFrl

B B

| |HI| IIHI
l|||||“l|| il -Inr — ll ||||I-I EI_

-..u.“.., o I ...

uln Inlh I v

n".',-, JE . L_-,lq-

qu;. :--Hl ; P
. B . _. ||||||-||u|| L . . K,
q"- III!II I*I |_ ‘ inpin EIII’ I

E i i (ot .-.-tr_

IIHII“ ll*ﬁ III.F

.,,g!j-m".-' - g Ty g 1
q bl i ||u|_ III-I!II “III.IIIlIIl-IIII_'III!“

55

Step by step...

‘Trust the

Hybridization
‘Load balance
®

Overlap

.Asynch rony

o .
Detailed Performance Analysis

2021/07/07

programming
model and
malleability

56

Summary

* Do not fly blind
* Let performance analysis guide you

* Asynchrony is not enough, overlap

* Overlap can hide Communication overhead but not load balance

* Do not fight variability, adapt!
» Be flexible and malleable

* Trust the programming model
* Forget about hardware

2
"
2
1]
=
Y]
()
O
=
4]
=
-
o
=
o
o

Programmability

57

2021/07/07

0 Performance Optimisation and Productivity
A Centre of Excellence in HPC

00

Contact: ER—
https://www.pop-coe.eu £
mailto:pop@bsc.es S,
£ @POP_HPC B

=l)

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

