001     905663
005     20230123101849.0
024 7 _ |a 10.5897/AJEST2019.xxx
|2 doi
024 7 _ |a 10.5897/AJEST2021.3068
|2 doi
024 7 _ |a 2128/30792
|2 Handle
037 _ _ |a FZJ-2022-00890
082 _ _ |a 690
100 1 _ |a Dickson Ijioma, Uche
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Characterizing groundwater vulnerability in developing urban settings using DRASTIC-LuPa approach: A case study of Aba City, Nigeria
260 _ _ |a [S.l.]
|c 2021
|b Academic Journals
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645712205_20731
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The impact of certain unregulated land-use activities harms the quality of water resources and reduces the sufficiency of drinking water in many developing countries. This study aimed to capture the impact of such activities and evaluate the specific groundwater vulnerability using a modified DRASTIC approach. The DRASTIC-LuPa was proposed and implemented for Aba City, Nigeria by incorporating land-use and the impact of pumping layers to the “intrinsic” DRASTIC parameters. The results of the analysis revealed that the area classified as “low” was 15 and 79.1% as “medium” and 5.9% as “high” vulnerability classes for the DRASTIC. Whereas for the DRASTIC-LuPa model 3.2% for “low”, 54.3% for “medium”, 41.8% for “high” and 0.7% for “very high” were found. The transitions in the vulnerability classes of areas displaying “high” and “very high” found in the DRASTIC-LuPa model represent the impact of urban hotspots observed in the area. This result implies that groundwater protection measures should be implemented in the area designated with “low” and “medium” vulnerability classes and used for abstracting clean water for drinking purposes. The proposed model enhances the predictability and guarantees better transferability of the approach in urban settings with similar urban trends.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Wendland, Frank
|0 P:(DE-Juel1)129554
|b 1
700 1 _ |a Herd, Rainer
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.5897/AJEST2021.3068
|0 PERI:(DE-600)2383397-X
|n 12
|p 540-559
|t African journal of environmental science and technology
|v 15
|y 2021
|x 1996-0786
856 4 _ |u https://juser.fz-juelich.de/record/905663/files/00D0FD468360.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905663
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129554
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21